
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A246 148

R TI
ELECT I

THESIS

THREE DIMENSIONAL GUIDANCE
FOR THE NPS

AUTONOMOUS UNDERWATER VEHICLE

by

Christopher Magrino

September 1991

Thesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

92-03975

9J2 x - 67



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2- SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONAVAI]LABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

" NAME OF 0 E0 FORING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer 9cience ept. (if applicable) Naval Postgraduate School

Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
THREE DIMENSIONAL GUIDANCE FOR THE NPS AUTONOMOUS UNDERWATER VEHICLE (U)

k[ PER5S0N/ AVTHOIR()lagno, .nstopner (NMN)

ster TYPs REPORT 13b.From:6/90To: 9/91 14. DATE OF REPORT (Year, MonMh, Day) 115. 'GE COUNT
strsfhssFom /0To /11991 September 2616

16. SUPPLEMENTARY NOTATIOTI'he views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP spatial tracking, guidance, cross track navigation, autonomous undewater

vehicle, AUV, control system

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The Naval Postgraduate School is currently conducting research in the area of autonomous underwater vehicles.

In support of this research, the school has developed a testbeu vehicle and graphic simulation. One of the major thrusts
of the project is the development of a control system.

This work explores the implementation and testing of a guidance scheme proposed by Kanayama called spatial
-tracking. The method is evaluated with and without consideration for AUV dynamics. Spatial tracking is also com-
pared with an earlier guidance scheme attributed to Kanayama known as cross track guidance.

The NPS AUV testbed vehicle and simulator are also described within this work.

20 DISTRI BUTION/AVAILABILITY OF ABSTRACT 1 21 ABSTRACT SECURITY CLASSIFICATION

2 UNCLASSIFIED/UNLIMITED [] SAME AS RPT [] DTIC USERS UNCLASSIFIED
a NMFF RESPONSIBLE INDIVIDUAL 22b TELEPHONE fInclude Area Code) 22c CE SYMBOLVutaa lanayama (408) 646-20951 a

OD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED



Approved for public release; distribution is unlimited

THREE DIMENSIONAL GUIDANCE
FOR THE NPS

AUTONOMOUS UNDERWATER VEHICLE

by
Christopher Magrino

Lieutenant, United States Navy
B.A., Miami University, 1985 T

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September, 1991

Author: - Clhristopher Magrko

Approved By: L k a ym' qsii-lIfutaka Kanayama, Thesis ildv~sor

Yuh-'ng Lee/,Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii



ABSTRACT

The Naval Postgraduate School is currently conducting research in the area of

autonomous underwater vehicles. In support of this research, the school has developed a

testbed vehicle and graphic simulation. One of the major thrusts of the project is the

development of a control system.

This work explores the implementation and testing of a guidance scheme proposed by

Kanayama called spatial tracking. The method is evaluated with and without consideration

for AUV dynamics. Spatial tracking is also compared with an earlier guidance scheme

attributed to Kanayama known as cross track guidance.

The NPS AUV testbed vehicle and simulator are also described within this work.
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I. INTRODUCTION

A. BACKGROUND

In the last several years, research in the area of autonomous submersibles has become

an important issue within the Department of Defense. It is projected that autonomous

underwater vehicles will be capabl- of conducting a variety of missions such as underwater

surveillance, tracking, mapping, mine laying, and even offensive anti-submarine

operations. There are some obvious advantages associated with using an unmanned

submersible in missions of this nature. First, an AUV (autonomous underwater vehicle)

may perform tasks which are considered too dangerous for humans to accomplish. Second,

they may operate without regard to the physiological limitations that constrain manned

vehicles.

However, there are also problems associated with the use of unmanned, unthethered

vehicles. First, once the vehicle is launched on a mission, the vehicle is on its own. The

operator must rely upon the vehicle's control software to carry out the assigned mission.

This, in itself, is a complex problem that requires detailed programs to cover every possible

situation. To add to this complexity, the vehicle must also possess the ability to conduct its

mission even in the presence of unforeseen difficulties.

One particularly important aspect of control software is the guidance system. The

guidance system is responsible for taking information on current vehicle position and

orientation and comparing it with desired vehicle position and orientation. The resulting

information is used to either maintain the current path (if current and desired locations are

the same) or correct to achieve the desired path (if current and desired locations are

different).



The N: .l Postgraduate School has been conducting research in an attempt to solve

the problems mentioned above. The school has a working testbed vehicle that is supported

by a graphic simulation. Both the vehicle and the simulation will be described within this

work.

In support of the NPS AUV project, the major thrust of this work is to implement and

test a three dimensional guidance scheme developed by Kanayama. We call this new

guidance scheme spatial tracking. Within the scope of this work, the spatial tracking

guidance system is installed and tested on the simulator version of the AUV. Due to the

modularity of design, the software may be easily installed in the testbed vehicle later on in

the developmental stage.

Another important topic discussed within this work is the examination of an earlier

guidance scheme by Kanayama known as cross track guidance. This scheme will then be

compared with spatial tracking.

B. THESIS ORGANIZATION

The remainder of this work is organized as follows.

Chapter II is a review of previously published work relating to guidance systems for

autonomous vehicles. These works have served as building blocks for this research and

their effects on it are summarized.

Chapter III is a description of the AUV simulator using the spatial tracking method of

guidance. The data structures, modules, and data stores are presented.

Chapter IV is a description of the AUV system. First the actual testbed vehicle is

described. The chapter concludes with a section that compares the testbed vehicle with the

simulator discussed in Chapter III. Major differences between the two are highlighted.



Chapter V presents cross track guidance and spatial tracking. The chapter begins with

the presentation of cross track guidance and continues with the formal description of spatial

tracking. These results are independent of any vehicle constraints.

Chapter VI presents the test results of the spatial tracking guidance scheme as they

apply to the NPS AUV Simulator. The chapter begins with the presentation of two topics

that are important when the guidance system is applied to the simulator. The first explores

the use of limiters to prevent excessive curvature values. The second topic is a discussion

of changing reference paths. The chapter concludes with the presentation of the results of

test cases that are run on the simulator.

Chapter VII is the conclusion of this work. The scientific value of this work is

evaluated and its short comings are identified. Also, the areas that need to be more

thoroughly explored are identified in the hopes that future research will be conducted in

these areas.



II. REVIEW OF PREVIOUS WORK

This ciapter provides an overview of previously published work relating to guidance

systems for autonomous vehicles. These works have served as building blocks for this

research and their effects on it are summarized below.

A. YAMABICO-1 1

In [KANAYAMA 88], [KANAYAMA 90], and [HARTMAN 89], a guidance system

was proposed for the Yamabico- 11 autonomous mobile land vehicle. In [KANAYAMA

91 ], a set of locomotion functions were developed for implementation on this vehicle. The

guidance system of the vehicle used reference and current postures for smooth and precise

positional control which made dynamic posture correction feasible. The product of the

guidance system was rate information which was then sent on to the autopilot where this

rate information was turned into corrections to the positioning actuators of the vehicle. The

vehicle's stability was proved using Liapunov functions. The guidance system used cubic

spirals as the desired path to follow between postures which had the effect of minimizing

jerk between waypoints. The minimization of jerk is a very desirable feature for a guidance

system of an underwater vehicle. Since this vehicle was for terrestrial uses, the guidance

system was designed for two dimensional applications only. However, due to the simplicity

of this guidance system, an extension to three dimensional applications appears to be

practicable. The concept of a posture that was introduced in this work has been expanded

to a three dimensional posture for the NPS AUV.

B. WOODS HOLE RPV

The Woods Hole Oceanographic Institute has been conducting research in the field of

underwater vehicles for many years. In the past they have developed such vehicles as

4



JASON and JASON Jr. that have been successfully used to conduct sonar, video, and

electronic photographic surveys of underwater objects in the open ocean. These two

remotely operated vehicles require precise control which is sometimes difficult to provide

due to their nonhydrodynamic shapes. To ensure continuing evolution of advanced control

systems for future development at Woods Hole, the RPV test bed vehicle has also been

developed. This vehicle's components are modeled after the JASON series ROVs so as to

serve as a research model for evolution of the operational ROVs.

Unlike the NPS AUV, the Woods Hole RPV uses five thrusters (four lateral and one

vertical) as its principle means of movement. This scheme of propulsion introduces several

control problems. In [YOERGER 91], a trajectory control scheme using adaptive sliding

control techniques was proposed to alleviate these problems. The adaptive control allows

the operational system to be robust to unanticipated changes in the vehicle's dynamic

parameters. The uncertainty-performance trade-off that is explicitly available with sliding

control techniques allows the formulation of adaptation laws for a wide class of nonlinear

systems based upon Liapunov stability considerations.

C. UCSB SIMULATION

The University of California at Santa Barbara has conducted research in three

dimensional guidance for underwater autonomous vehicles. In [SAVANT 90], a Liapunov

function approach has been used to develop a non-linear feedback control scheme for non-

holonomic vehicles. The work is an expansion of the two dimensional algorithms

introduced by Kanayama for the Yamabico-1 1 mobile land vehicle [KANAYAMA 90].

This research applies three dimensional guidance equations to a computer simulated

submersible represented by a point mass. In addition, the effects of side slip were not

considered as all vehicle motion was assumed along the longitudinal axis of the vehicle. As

5



in the Yamabico- 11, the guidance system output rate information which was used by the

autopilot to attempt to regain the reference posture.

D. NPS AUVII

The current version of the NPS AUV project is in version III. Its predecessor was the

AUV II. In [CLOUTIER 90], the guidance system used cubic spirals as the desired path to

follow between waypoints. Waypoints were positionally restricted to a three dimensional

grid where allowable waypoints were positioned at the intersections of the x, y, and z

planes. Actual grid size was to be determined by actual vehicle maneuverability from in-

water tests. As in the Yamabico- 11, the guidance system used reference and current

postures to determine error postures. The error posture information was used to determine

a cubic spiral path between waypoints that was smooth and that minimized jerk. This cycle

was performed on a 10 hertz frequency and generated an intermediate waypoint on each

iteration. Each intermediate waypoint was to fit the cubic spiral path between waypoints

and was sent to the autopilot for processing.

The evolution of the AUV III will use portions of the guidance scheme presented

above. The concept of a current posture is still valid. This current posture will be used to

generate a spatial posture. With AUV III, we shall explore the use of spati . tracking as a

means of guidance. Chapter V will discuss this method in detail.

6



III. NPS AUV III SIMULATOR

The Naval Postgraduate School has been developing a small autonomous underwater

vehicle to be used for research purposes by faculty and students of the school. The major

thrusts of the project are in the areas of mission planning, mission analysis, mission

execution, and post mission data analysis [HEALY 90]. The actual vehicle is supported by

a simulation installed on Silicon Graphics Iris 4D workstations [JUREWICZ 90]. The

simulator reproduces near-actual vehicle responses and is under continued development so

as to perform exactly like the testbed vehicle. The user's manual for this simulator is

included in this work as Appendix C.

This chapter will discuss the simulator in depth. It should be pointed out that the

required software modules for the two types of guidance systems discussed within this

work are considerable different. Since the guidance system used by the simulator is spatial

tracking, the simulator architecture presented here applies only to the spatial tracking

guidance scheme. See Figure 3-1 for the data flow diagram that describes the simulator

architecture.

A. DATA STRUCTURES

1. Postures

A posture is a data structure that holds position and orientation information that

describes the six degrees of freedom for the AUV. Two types of postures are discussed in

regards to the AUV Simulator:

* Current Posture

* Spatial Posture

7
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The current posture describes the actual position and orientation of the vehicle. It does this

by holding a value for each element of the six degrees of freedom as represented as follows:

PC= (x, y, z, , , ) (Eq. 3-1)

where, x, y, and z are the positional displacements of a vehicle from a predefined origin in

the longitudinal, rotational, and vertical planes respectively, and 0, 0, and V are the

angular displacements from the longitudinal axis in pitch, roll, and yaw respectively.

The makeup of a spatial posture is slightly different from the makeup of a current

posture. A spatial posture holds the position and orientation information, but also holds

additional attributes known as curvature. Curvature is a product of the guidance system and

will be explained in detail in Chapter V. The six degrees of freedom and the curvature are

expressed as follows:

PS = (x, y, z, 4, 0, Wc, 1, F) (Eq. 3-2)

where the first six elements are as above, and K is the curvature of the projection of a path

in the x, y plane and F is the curvature of the projection of a path in the x, z plane.

Additionally, during the discussion of cross track guidance in Chapter V,

reference and error postures are introduced. These two postures will be defined in the

discussion of cross track guidance.

2. Waypoints

A waypoint is a three dimensional position expressed as:

(x, y, z) (Eq. 3-3)

In addition, depending upon the type of path that is to be represented by a waypoint, the

data structure may contain orientation, curvature, and/or radius information. This

additional information must be derived from the values of equation 3-3. Waypoints come

from either the user specified mission requirements or from the obstacle avoider.

9
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Figure 3-2 Reference Path Representation

Waypoints from the obstacle avoider override a waypoint specified by the user. In either

case, they are used the same way by the guidance system. Waypoint are used to form a

reference path. By linking adjacent waypoints with rays, a continuous path is formed. These

rays are directed and may take on one of four different forms:

* Continuous line

* Half line

* Circle

* Curve

See Figure 3-2 for a graphical description of these four rays.

A continuous line is represented by a planar position and orientation in the x, y

and x, z planes. This line has no beginning or end points. A half line is represented in the

same manner as a continuous line; however, the point that specifies the line also specifies

an end point. A circle may be described in two ways. The first way is to use a planar

position that specifies the center of the circle and include a radius value. The sign of the

10
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W2 =

(X2, Y2, V

Orientation of W1 to W2 is equal to:

V = atan2,(Y2- Y "

X

(xp, Yp> V1) W1

Figure 3-3 Reference Path Representation Using Half Lines

radius determines the direction. A positive sign signifies a counterclockwise movement

while a negative sign indicates a clockwise movement. A circle may also be represented by

a planar position located on the circumference with curvature values in the x, y and x, z

planes. Again, the sign of the curvature values indicate direction. The use of these two

different representations for a circle are dictated by the circumstances. For example, the

former representation would probably be more useful when avoiding obstacles, while the

latter may be a better representation when switching paths. A curve may be represented

using planar position and orientation. A curvature value with respect to distance from the

planar position is also needed to specify curvature at a particular point along the curve.
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The orientation between waypoints is specified in the x, y plane by taking the arc

tangent of the difference between the x and y coordinates. To add a third dimension, the

orientation of this ray is also specified in the x, z plane by taking the arc tangent of the

difference between the x and z coordinates. Figure 3-3 gives a graphical description of this

process in the x, y plane using directed half lines.

B. MODULES

The guidance module and the other thr'ee modules described in this section are the

heart of the AUV simulator's control system. These explanations are provided so as to give

one a better understanding of the interaction between the guidance system and the other

three modules. Although the descriptions provided here apply only to the simulator version

of the AUV, only minor modification would be necessary to install one or more of these

modules in the testbed vehicle used at NPS. See the AUV Simulator Data Flow Diagram

(Figure 3-1) for a complete breakdown of the simulator architecture.

1. Guidance

The guidance system is a key component of an autonomous vehicle. This system

is responsible for directing the vehicle from waypoint to waypoint and also, when the

vehicle's position is determined to be in error, its purpose is to calculate corrections to

return the vehicle to the reference path.

There are several different types of guidance schemes that may be employed. Two

of these schemes are discussed in Chapter V. For the purposes of this work, we will be

implementing a guidance scheme developed by Kanayama that we call spatial tracking.

This method compares the current spatial position of the vehicle with the reference path and

determines a smooth path to travel. See Chapter V for a complete description of this

12



method. See Appendix B for a listing of the C program that implements this method on the

AUV simulator.

2. Navigator

The navigator's main function is to read the sensors of the AUV and determine

the exact position of the vehicle. On the NPS AUV, a sensor suite consisting of a directional

gyro, a vertical gyro system, a three axis rate gyro system, and a three axis translational

accelerometer are simulated to aid in fixing the vehicle's position. In [HEALY 90], the

testbed vehicle was described to have this particular configuration. In [FLOYD 91a],

pattern matching is proposed as a method of positional updating. In this method, range and

bearing information received from the sensors is loaded into a least-squares-fit algorithm

to determine surfaces of polyhedrons. These computed surfaces are then compared with the

known environment model to try and determine the vehicle's actual location.

Once the actual vehicle location has been determined, the navigator converts this

information into current postures. The navigator then feeds a current posture to the

guidance system each AT where, the calculation of a new spatial posture is performed.

The navigator module on the simulator has the luxury of knowing the exact

vehicle position without the aide of any sensor information. The module simulates

receiving sensor data and determines exact position in relation to the specified origin. Also

present within this module is a method of introducing a disrupting force so the current

posture and the reference path may be significantly different from each other.

3. Autopilot

The autopilot's main function is to receive course correction information from the

guidance system and convert this information into electrical signals that will cause

movements in the planes and propellers of the vehicle. In the simulator, the product of the

autopilot is loaded in the H-matrix [JUREWICZ 90] of the graphics pipeline where the

13



vehicle's position in relation to the screen is changed [JUREWICZ 90]. Further, there is a

corresponding change in planes and propellers on the screen to aid in the visualization of a

maneuver. Depending upon the type of guidance system employed by an autonomous

vehicle, the information received by the autopilot could take on different forms.

If the cross track guidance method is used, the autopilot will receive rate

information from the guidance system. The Yamabico- 11 mobile land robot utilizes cross

track guidance and therefore serves as a good example of a guidance system that sends rate

information to the autopilot.

The autopilot used with the NPS AUV Simulator receives a spatial posture from

the guidance system. As previously noted, a spatial posture holds the position, orientation,

and curvature information of the vehicle. A series of spatial postures are used as waypoints

between the current posture of the vehicle and the desired path of the vehicle. The autopilot

will then direct a vehicle from its current position to the next spatial posture to try and

achieve the reference path.

4. Obstacle Avoider

The obstacle avoider's main function is to override the reference path specified

by the user in the event of encountering an unexpected obstacle. Since the user may not be

aware of the obstacle information stored in the vehicle's environmental database, there is

great potential of encountering unplanned for obstacles during the ceolrse of a mission. In

the event that the vehicle's sensors detect an obstacle in the planned path of the vehicle (see

[FLOYD 91a]), the obstacle avoider generates emergency waypoint information to

navigate past the obstacle. The linking of a series of these waypoints are then used instead

of the reference path until safely past the obstacle and until the vehicle returns back to the

reference path. Another possible way to navigate around an obstacle would be to use a

circular path as described in Figure 3-2. The center of the obstacle may be used as the

14



definition point of this circular path and the radius value will depend upon the size of the

obstruction. The actual method used would be determined within the algorithm that

functions as the obstacle avoider.

C. DATA BASES

There are two data stores on Figure 3-1. These two are described below.

1. Mission Log

The mission log is a database that holds current posture information recorded by

the navigator. This data store receives a new current posture on each cycle of the control

loop. By holding the current posture information, a mission may be saved and replayed at

a later time for evaluation purposes. Both the simulator and the testbed vehicle utilize this

database for this purpose. This data store also allows testbed vehicle runs to be replayed on

the simulator.

2. Environment Models

Before obstacle recognition and positional updating may take place, a suitable

environment must be defined. This environment model must facilitate the three functions

of path planning, positional identification, and model updating. All three of these functions

require the expression of the environment in some type of numerical form. Therefore, linear

features are defined by a Cartesian coordinate system where some predefined point serves

as the origin. In this manner, all features may be expressed in terms of their x-, y-, and z-

coordinates where the linking of three or more vertices defines a polyhedron.

The structure used to link the points of a polyhedron is a linked list. This data

structure is allocated in memory containing the x-, y-, and z-coordinates of each point.

Pointers are then used to specify which vertices are connected to form the surfaces of a

polyhedron.

15



For the AUV simulator, three different environment models have been developed.

and are described below.

a. NPS Swimming Pool

The NPS swimming pool serves as one environment for the operation of the

AUV simulator. Since the testbed vehicle runs all of its tests in the NPS swimming pool,

the graphical representation of this environment is essential. The test runs that will be

shown in Chapter VI are run within this particular environment.

The pool has the dimensions of 35.84 meters by 18.40 meters with depths

ranging from 1.07 meters at the most shallow point to 2.29 meters at the deepest point. The

pool bottom consists of two parts that are of roughly equal size. The first is a flat surface

that is of the maximum depth of the pool. The second is a sloping section that begins at 1.07

meters and reaches the maximum depth of 2.29 meters. See Figure 3-4 for pool dimensions.

The pool is graphically represented by using an array structure that holds the

dimensions of the six polygons that make up the pool (four walls and two floor surfaces).

In addition, a user is able to enter additional objects into the pool environment to facilitate

the testing of the guidance mission as well as other missions that are essential to the

accurate evaluation of vehicle performance.

b. Monterey Bay

The Monterey Bay has been graphically represented for use in the simulation.

A 49 kilometer by 44.4 kilometer rectangle of ocean floor and terrestrial terrain has been

digitized in 200 meter increments [JUREWICZ 90]. This area includes the coastline that

stretches from the Santa Cruz area in the north to the Pebble Beach area in the south. The
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Figure 3-4 NPS Swimming Pool

environment has depths that range from zero at the shoreline and includes the Monterey

Canyon where depths exceed 7000 feet. See Figure 3-5 for a computer generated aerial

view of the bay area.

Due to the spacing of 200 meters between data points, this environment is not

especially valuable in the testing and evaluation of the components of the control system.

Howeer, this model continues to be invaluable for its original purpose of testing the
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Figure 3-5 Aerial View of Monterey Bay

simulator equations of motion and hydrodynamic coefficients in an expansive, real-time

setting.

c. Monterey Harbor Boat Basin

The Monterey Harbor boat basin area consists of a 1800 foot by 1440 foot

rectangle of ocean floor and terrestrial terrain that has been digitized in 30 foot increments.

This area includes the coastline that stretches from Municipal Wharf Two in the south to

the U.S. Coast Guard Pier to the north. The depth of the terrain varies from zero feet along

the coastline to a maximum depth of 45 feet in the extreme northeast comer of the

rectangle. See Figure 3-6 for a computer generated aerial view of the harbor area.
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IV. NPS AUV III SYSTEM

The AUV m Simulator as described in Chapter III does not stand alone. As previously

stated, the simulator is modelled after an actual testbed vehicle that is currently operated by

NPS. The simulator and the testbed vehicle together form the AUV 1I System. Within this

chapter, the specifications of the testbed vehicle are presented. The vehicle architecture and

performance characteristics are then compared with the simulator version.

A. TESTBED VEHICLE DESCRIPTION

1. Specifications

The AUV testbed vehicle as shown in Figure 4-1 is 93 inches long. Not including

the length of the planes and rudders, the main body of the vehicle has a 16 inch beam and

a height of 10 inches. The total overall displacement of the vehicle is approximately 387

pounds.

The vehicle has four independently controllable planes mounted on the side hull.

Two are mounted port and starboard forward and the other two are mounted port and

starboard aft. Symmetric with the placement of the planes, the vehicle also has four

independently controllable rudders mounted on the top and bottom surfaces of the hull

where two are placed forward and two are placed aft (see Figure 4-1).

The propulsion system consists of two aft mounted screws and four tunnel

thrusters. The thrusters allow the vehicle to move laterally as well as vertically independent

of actual vehicle heading. The presence of these thrusters enables motion in all six degrees

of freedom when travelling at higher speeds.
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Figure 4-1 NPS AUV Ill

2. Holonomic Nature of the AUV

By definition, a vehicle that is holonomic is equipped with actuators that will

enable it to independently move in as many degrees of freedom as it possesses. Conversely,

a non-holonomic vehicle is a vehicle that's movement is restricted in one or more of its

degrees of freedom. As mentioned above, the NPS AUV possesses six degrees of freedom.

Furthermore, unlike most propellered submersibles, the NPS AUV is considered

holonomic.

Vehicles such as the conventional submersible described by Savant [SAVANT

90] are usually non-holonomic. These vehicles possess one or more stem mounted
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propellers to move the vehicle along the longitudinal axis (the x component of the posture)

and a series of planes to configure the vehicle's orientation (the 4), 0, and V components of

the posture). However, there is no capability to independently move either laterally (the y

component of the posture) or vertically (the z component of the posture). Obviously, by

utilizing a combination of the four controllable components, movements in the lateral and

vertical directions may be realized. However, this movement may entail unacceptable

movements in the degrees of freedom for the components used to produce this movement.

For example, a non-holonomic vehicle may obtain a posture that is different from its

originating posture in the lateral component by adjusting the x and V components of its

originating posture to arrive at the destination posture. However, the resulting path would

be lengthy and may not be the most desirable. A more desirable path may be to move

laterally.

The NPS AUV achieves holonomic characteristics through the use of lateral and

vertical thrusters. In the above example, the AUV could achieve a lateral displacement by

independently changing the lateral component of its six degrees of freedom. Likewise, the

vertical thrusters allow the vehicle to change its vertical component independent of the

other five components.

B. SIMULATOR/VEHICLE COMPARISON

As stated above, the simulator is designed to model the actual AUV. This goal has, for

the most part, been realized. However, there are certain aspects between the two that are

significantly different. The following section will discuss these differences and bring to

light limitations of the AUV Simulator.
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1. Components

As should be apparent by the examination of Figures 3-1 and 4-2, the architectural

differences between the testbed vehicle and the simulator model are significant.

In both data flow diagrams, the external processes labelled as OPERATOR

signify the human operator of the system. This is where the similarity ends. With the

testbed vehicle, the user will have a well defined interface where selections will be made

as to mission type and duration. This information will be sent to the PLAN/REPLAN

MISSION process where a path will be generated to carry out the mission. The path will

then be sent to the EXECUTE MISSION process where the actual reference waypoints will

be generated. Since processes 1 and 2 of Figure 4-2 are still in the developmental stage, a

different approach was necessary for use with the simulator. Keeping with the spirit of the

actual vehicle design, the solution was to bypass the high level user interface and for the

user to enter the path in directly. This is accomplished by the user loading a series of

waypoints directly into the simulator environment. The waypoints consist of x, y and z

position. These waypoints are then processed directly by the guidance system of Figure 3-

1 to generate spatial postures.

Another major difference between the architecture of the two is summed up on

Figure 3-1 by the external process labelled as SIMULATOR SYSTEMS. In the simulator

version, the vehicle systems are incorporated into this one external process. The vehicle

systems are those systems that move the vehicle such as the props, planes and thrusters or

components such as the sonar equipment. These systems have been lumped into one

external process because they are handled differently within the simulator environment

then they are handled on the testbed vehicle. On the testbed vehicle, the output of the

autopilot is an electrical signal that causes the planes to move to a certain angle and the

props to turn at a certain r.p.m. However, in the simulator, the autopilot signals are quite
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different. The autopilot in this case, loads values into the simulator H-matrix [JUREWICZ

90]. The resulting combination of values in this matrix are what cause the control surfaces

of the simulator to move and the position of the simulator to be updated.

The remainder of the components on Figure 3-1 function as their counterparts do

on Figure 4-2.

2. Performance

Currently, there is insufficient data available to compare the performance of the

simulator with the performance of the testbed vehicle. As stated by Jurewicz [JUREWICZ

90], the equations of motion that the simulator uses to reproduce vehicle responses to

hydrodynamic forces were based upon data derived from another submersible vehicle.

These equations of motion were modified to take into account the characteristics of the

AUV, but the equations have yet to be tested against testbed vehicle characteristics.

However, this problem had been planned for by Jurewicz when he included the

coefficients package within the simulator software. This package enables the user to adjust

the coefficients for the hydrodynamic equations of motion "on the fly" to obtain required

results. When testbed vehicle data does become available, all that will be required to obtain

correct simulator performance will be to adjust the appropriate coefficients. These new

coefficients may then be saved for use as baseline values.

The coefficients package also enables the added advantage of planning for

casualty situations. With this package, it is possible for the user to test the resulting vehicle

response to control surface hardovers or the response to damage to rudders and planes by

introducing adjustments to the coefficients.
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V. GUIDANCE SYSTEM

In this chapter, we shall present two methods of guidance. After each is explained in

detail, the chapter will conclude with a comparison of test runs conducted using each

method.

A. CROSS TRACK GUIDANCE

1. Problem Statement

The cross track guidance scheme is a method of navigation that computes rate

information to return to a reference posture. The result of the comparison between current

and reference postures are used to calculate an error posture. These error postures are then

used to derive target linear and angular velocities. The velocities are then sent to the

autopilot which must convert this information into plane and propeller action that will

enable a vehicle to return to a specific reference posture.

This system is implemented inside a control loop such as depicted in Figure 5-1.

Each iteration of the loop would occur at a specified time interval, At. At each At, a new

reference posture is provided to the guidance system by the path planner and a new current

posture is provided to the guidance system by the navigator. The current posture remains

as defined in Chapter II. The reference posture, like the current posture, is also a data

structure that holds position and orientation information. It is made up of the same six

elements from equation 3-1. However, instead of describing the vehicle's actual position,

the reference posture specifies the desired position and orientation. Since the goal of the

cross track guidance scheme is to arrive at a specified point at a specified time, the guidance

system needs a point to achieve, not just a path to obtain.
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Figure 5-1 Cross Track Guidance Control Loop

Error postures are internal to the guidance system and are the difference between

the reference posture and the current posture at a time, T. Error postures are expressed in

body coordinates. Refer to Figure 5-2 for a two dimensional graphical description of this

concept. On this Figure, Pr is the reference posture, PC is the current posture, and the three

components labelled with subscripts e are the derived components of the error posture. The

error postures are used within the guidance system to compute target velocities. This

concept shall be discussed in detail later in this chapter.

2. Liapunov Stability

Stability is the measurement of the reaction of a vehicle when a change in

operating conditions occurs. If the change has little or no effect upon the vehicle, the
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vehicle remains close to the equilibrium state and is said to be stable. If the vehicle is

effected, the vehicle moves away from the equilibrium state and is said to be unstable. In

speaking of stability in autonomous systems, we may further break down a stable condition

into stable and asymptotically stable. Although stable and asymptotically stable vehicles

remain within the equilibrium state, an asymptotically stable vehicle will converge towards

the origin. Figure 5-3 gives a graphical description of the three different states. To remain
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within equilibrium, a body must not cross the boundary for acceptable error. In this context,

acceptable error is dependent upon the design considerations of a vehicle.

The theorems of Liapunov aim to reduce the properties discussed above to a

single scaler function, V (x) . This function must conform to the following properties:

* V (x) is continuous together with its first partial derivatives in a certain open

region about the origin. The outer circle on Figure 5-3 is the open region in

question.

*V(O) =0.

* Outside the origin, V (x) is positive. In other words, V is non-negative and

goes to zero at the origin.

When V (x) satisfies all of these conditions, it is said to be positive definite. In addition,

if the first derivative of V is less than or equal to zero, V is called a Liapunov Function

[LASALLE 61].

In cross track guidance, finding a stable control rule is accomplished by the use

of a Liapunov Function. In [SAVANT 90], a Liapunov Function candidate for a three

dimensional control rule was defined as:

S xex+kTf(e) (Eq. 5-1)

where x. is defined as the rotation matrix:

VcosWcosO cosW sine sine - sinvcoso cosNisinfcos¢ - sinWsino

R = j-sinWcosO sinxsin0sino + cosxVcoso sinilsin~coso - cosWsinof

L -sinO cosOsine cosocos¢ J
(Eq. 5-2)

times the spatial coordinates of the reference posture minus the spatial coordinates of the

current posture:
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Xr = (Xr, Yr Zr) T (Eq. 5-3)

x= (x, y, z) T (Eq. 5-4)

which is represented as follows:

x e = RT (X r-Xc ) (Eq. 5-5)

The symbol k represents the gain constants (kI, k2, k3 ) T and f(B e  is defined as:

f(eI) = cosOe (Eq. 5-6)

- COSyIe

The derivation of the control rule and the proof of equation 5-1 is presented in [SAVANT

90].

3. Calculation of Error Postures

The guidance scheme receives reference posture information from the path

planner and current posture information from the navigator in the form:

P= (xr, Yr' Zr, 4Or, Or, r) (Eq. 5-7)

Pc = (Xc, Yc' Zc, 4c Oc' Oc ) (Eq. 5-8)

Where Pr is the reference posture and PC is the current posture; x, y, andz are the planar

locations on the three dimensional plane; and 0, 0, and 4f represent pitch, roll, and yaw

angles respectively. Reference and current postures are used to calculate error postures. As

previously stated, the error posture is the difference, in body coordinates, between the

reference posture and the current posture at a time, T. The error posture is defined by the

following equations:

xe = cosVcCos0C (x,-xC) +

sin~ccos0 c (Yr -Yc ) - sin0cr (Z - Zc) (Eq. 5-9)
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Ye = cos4, sinO 0 sin 0c - sin Vcos0, (x, -x,) +

sinf sine sin0c + cosc°S5c (Yr -Yc) +

cosecsinoc (z, - zc ) (Eq. 5-10)

ze = cosvc sinOccosOc + sinilfcsin c (x, - xc) +

sinic sinO cC -os c-osc sinc (Y, - Yc) +

cOS0cCOSsc (Zr - zc ) (Eq. 5-11)

Oe = Or -Oc (Eq. 5-12)

ee = Or- 0 c  (Eq. 5-13)

Ve = 4r - Vc (Eq. 5-14)

The results of these equations are then sent to the feedback control loop. See Figure 5-1 for

a description of the control loop.

4. Feedback Control Law

The heart of the cross track guidance system is the feedback control law. In this

set of equations, the target velocities are computed that will return the vehicle back to the

reference posture. We are interested in two sets of velocities. The first are the linear

velocities and they are denoted as follows:

u= (u,v,w) T (Eq. 5-15)

where,

U = Ur + r (cos4fcos 0 , - I ) +Kj.e (Eq. 5-16)
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v = Vr+Vr(sinlIcosOe- I ) +Kxe (Eq. 5-17)

r = rr+rr(- sin e - I ) +K:Xe (Eq. 5-18)

The constant K. in the above equations is a convergence factor that relates to AT. The

angles and velocities are either marked with subscript e or r and denote error or reference.

The second velocities are the angular velocities and they are denoted as:

o= (p, q, r ) T (Eq. 5-19)

where,

P =Pr+ qr (sinqrtaner - sinOctanOc ) +

r r (cOS4rtano r - cosoctan0,) +K 1sin~e -

(-Zei r sine

sinOe rsi + q (sin rsecer- sin40secG c ) +

rr (cos4rsecer - cosocsec0 c ) + K3 sinVe) (Eq. 5-20)

(Ye urcos0e sin e
q =qr+ COS Oe c K + q r ( cos O r -cosr - ) -

rr(sinO- sinOc) +K 2 sin e) +

(-Ze~ri~
sin cOSeK3sinWe + (qr(sinOr secOr- sinOc se/ c ) + )~K 3 smn~~ -

rr (cOSOrsecOr - cOSOc sec O) + K3 sinNe ) ) (Eq. 5-21)

r = rr - sin e (Yeurcosesin +() -
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r,(sin0r- sin0 c ) +K 2 sin0,) ) +

cosocose ZeUr sn +q,(sinOSeC -sin~csece c ) +

r,(cosorsece r - cos4)csecO c ) +K 3 sinve) (Eq. 5-22)

The constants K, K2 , and K 3 relate to convergence. The angles and velocities are either

marked with subscripts c, e, or r and denote current, error, or reference respectively.

The velocities u, v, w, p, q, r describe the speed of the vehicle in all six degrees

of freedom. In a typical underwater vehicle, the guidance scheme would only be concerned

with the angular velocities and the u component of the linear velocities. This is due to the

fact that the propulsion source would be propellers at the rear of the vehicle. However, in

the NPS AUV, the v and w components also must be considered due to the presence of

vertical and horizontal thrusters.

5. Three Dimensional Test Results

In this section, the results of a test run using cross track guidance are presented.

These test runs are applied to a point mass and are independent of AUV vehicle dynamics.

In the test run, the initial reference posture is:

P,-- (0,0,0,0,0,0) (Eq. 5-23)

and is incremented each At by:

Xr = Xr + (At x ur ) (Eq. 5-24)

where the reference longitudinal velocity, ur, is held at a constant value of 0.1 and At is a

ten hertz cycle. In other words, if a line connected all the reference postures, the postures

would appear at equal increments along the x-axis beginning at the origin and increasing

in the positive x direction.
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Figure 5-4 is a graph of the x versus y position with respect to time. The results

reflect the initial parameters entered as:

PC = (0, 1, -1,, 0, 0 ) (Eq. 5-25)

The result of the test run is a smooth convergence towards the reference posture. Figure 5-

5 is the graphical view of x versus z for the same initial current posture.

B. SPATIAL TRACKING

The guidance scheme chosen for implementation on the AUV Simulator is spatial

tracking. The mechanics of this method will be explained in detail below. Although this

method only returns a vehicle back to a reference path and not to a specific posture, it is

extremely simple to implement. Additionally, there is no significant increase in complexity

when the algorithm is expanded to three dimensions.

For simplicity, the initial discussion of spatial tracking will be discussed using only the

x, y plane. Therefore, the postures defined in Chapter III are redefined as:

PC (x, y, ) (Eq. 5-26)

and,

Ps (x,y, V,K) (Eq. 5-27)

for the purposes of this discussion. The expanded three dimensional implementation shall

be presented later in this section.

1. Problem Statement

Given the initial configuration described by Figure 5-6, it is desirable to find a

smooth and continuous path from the current posture, q,, to the reference path which is

defined by the point q0. As stated in Chapter III and modified above, the current posture,

qc, is defined by:
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qc z (xc, yc, Vc )  (Eq. 5-28)

and the reference path, q0 is defined by:

q0 z (x0 , y0 , V0) (Eq. 5-29)

Within the example of Figure 5-6, we are assuming a reference path that consists of an

infinite directed line that passes through the point specified by x and y, and direction is

specified by the angle V. The choice of qo is arbitrary and will satisfy the requirements of

the guidance equations as long as this point is located somewhere along the line that forms

the reference path. However, it is convenient for this example to chose q0 to be relatively

close to the current posture, q,. The point H is the point along the reference path that is

closest to the current posture. This point is also called the image point. The point A is a

point along the reference path an arbitrary distance s0 , from point H and is the point on the

reference path that the vehicle is directed to steer towards. This point is also called the

forrunner point. It will be shown later how different values of s o effect the rate of

convergence towards the reference path. The angle a is the orientation from q. to A

measured from the current heading of the vehicle. The angle I0 is the orientation from q,

to qo minus the perpendicular to the reference path. The distances d, d0 , and d, are self

explanatory. The goal is to use this information to calculate the required curvature, ic, that

the vehicle needs to achieve to return to the reference path.

2. Curvature

In an automobile, the curvature angle would be equivalent to the steering wheel

position of the vehicle. While travelling in a straight path, the steering wheel is neutral and

the curvature equals zero. If the wheel is turned to the left, curvature becomes greater than
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Figure 5-6 Spatial Situation

zero while a turn to the right results in a negative curvature. If the wheel is positioned at a

constant angle and the vehicle is allowed to traverse a 360 degree turn,

=- - (Eq. 5-30)r

where r is the radius of the resulting circle.

In the AUV, the steering wheel angle would correspond to the positions of the

control surfaces. The cumulative effect of the orientation of the four rudder surfaces is the

curvature angle of the AUV within the scope of this two dimensional discussion.
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3. Calculation of Curvature

Curvature is calculated using geometric principles. Referring to Figure 5-6, the

goal is to have point qc converge with point A. As defined in equation 5-30, curvature is a

function of the radius of the circle. At each time interval, At, a particular curvature is

defined by the circle connecting q, with A.

However, at a particular At, the only known values of Figure 5-6 are the current

posture, qc, which is received from the navigator and the reference waypoint, qo, which is

supplied by the user specified mission requirements (see Figure 3-1). With these two

points, it is possible to calculate the radius of the circle formed by the points qc and A.

There are two separate cases to consider. The first case follows.

As stated above, the image point, H, is the closest point of approach that the

current posture is to the reference path at a particular At. Therefore, a line drawn from q,

to H is perpendicular to the reference path and the length do may be calculated by:

do = V (xox C ) 2+ (yo-Yc) 2 (Eq. 5-31)

Also, the angle P3 is calculated by:

atan 2(YO YC) -(~V-9O0  (Eq.5-32)

The distance dl may then be determined by:

d, = d0 sino3 (Eq. 5-33)

which fixes the point H using the following equations:

Hx = x o - dcosivo (Eq. 5-34)

HY = YO -di sinVo (Eq. 5-35)
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Once the image point is determined, the forrunner point A is calculated using the

convergence factor so in the equations:

A. = H, + socosqo (Eq. 5-36)

AY = HY +s sinfo (Eq. 5-37)

With the fixing of the forrunner point, A, the distance between q, and A is:

d = J(A - xc ) + (AY +YC ) 2 (Eq. 5-38)

and the orientation from qc to A is calculated by:

a = atan2 AY j (Eq. 5-39)

This makes the calculation of the radius possible using the equation:

r = d (Eq. 5-40)2 sin (at - xWc )

See Figure 5-6 for a graphical representation of equation 5-40.

The above case is sufficient to guide the vehicle to the reference path. However,

as depicted in Figure 5-7, if the above method is used exclusively, the resulting path will

overshoot the reference path. Our desire is to achieve the reference path smoothly, without

oscillation. Therefore, a second case is required that will adjust the curvature at a derived

point so as to prevent oscillations and still remain relatively smooth.

First, the threshold point between the two cases must be determined. Referring to

Figure 5-8, the sign of the angle of xV, determines which case to use. The angle a is the

orientation from q, to A and is determined by:

a = atan2 (AY - Y, So ) (Eq. 5-41)

The angle 03 is the difference between xV and a and is expressed as:

= normal (a- 4f,) (Eq. 5-42)
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The angle V, is then simply:

V, = a+ (Eq. 5-43)

If V, is negative, the case described above is used. However, when the value of V, changes

from negative to positive, the following equation is used to calculate i:

- s0(l-cos(Vcyp ) 2
IC = So( OS("-XfP))2(q. 5-44)

docos3 x idOcos3 x sin (V-'Ya) I

where NIP is the orientation of the reference path. This equation is derived geometrically as

follows. Referring to Figure 5-9, and using the defiition of curvature as defined in

equation 5-30:

y = r - r (cosy) (Eq. 5-45)

Solving for the radius r, this equation may be rewritten as:

_ 0cosf3r -1cosy 
(Eq. 5-46)

Therefore, the curvature may be determined by:

K - d-cos1V (Eq. 5-47)

Experimental results using this equation still produces an overshoot situation. To rectify

this problem, the curvature produced by this equation is multiplied by:

SO (Eq. 5-48)

SI

where s, is the point of intersection with the reference path in an overshoot situation and

is specified as:

-d~cs 13sin (V, - Vt )S doo 1 - cosP t (Eq. 5-49)
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When this factor is multiplied in, the result is a convergence towards the reference path with

no overshoot. However, the use of equation 5-48 is limited to cases where s1 is positioned

between the image point and the forrunner point. If s1 is outside this interval, equation 5-

47 is used without the multiplication factor.

It should be pointed out that the exclusive use of equations 5-44 and 5-47 will not

produce the desired results either. The use of these two equations will limit Ic to turns in

one direction only. This will cause the vehicle to reach the reference path, but with an
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Figure 5-10 Resulting Path from Exclusive Use of Case II

undesirable orientation. The threshold point between the use of equations 5-40 and 5-44/5-

47 ensures that the vehicle is in proper position so as to reach the reference path with the

proper orientation. See Figure 5-10 for a graphical representation.

4. Three Dimensional Spatial Tracking

Up to this point, the discussion of spatial tracking has been presented only in two

dimensions. It is our contention that an expansion to three dimensions requires very little

additional overhead. As stated earlier, the curvature angle is equated to the positions of the

rudder planes in the two dimensional situation. Movement of the rudders causes a

corresponding change in the yaw angle of the vehicle in the x, y plane. Along the same

lines, the planes of the vehicle enable the vehicle to change its pitch angle in the x, z plane.

Therefore, the same equations used to compute the curvature in the x, y plane may be used

to compute curvature in the x, z plane. Instead of using y and \v values in equations 5-31
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thru 5-49, we substitute in corresponding values of z and 0. The curvature in the x, z plane,

as listed in equation 3-2, has been denoted as F.

5. Calculation of Spatial Postures

Once the curvature angles have been determined, the last task in each iteration is

to update the vehicle's position. This is accomplished using the following equations:

x c = x C + (Ascos (WI + - ) cos c)o) (Eq.5-50)

AV,
YC = YC + (Assin (Vc + L ) cos )) (Eq. 5-51)

zc = zC + (As sin) (Eq. 5-52)

0c= c + (Asr) (Eq. 5-53)

C= VC + (As I) (Eq. 5-54)

where As is:

As = Atur (Eq. 5-55)

and AN is:

AV!= AsKc (Eq. 5-56)

The resulting spatial posture is then sent on to the autopilot. See Figure 3-1.

6. Three Dimensional Test Results

Using the same test parameters used to show the results of cross track guidance

(Eq. 5-25), a test was run with the spatial tracking algorithm. Figures 5-11 and 5-12 are the

graphs of the results in the x, y plane and x, z planes respectively. On each, the result is a

smooth convergence towards the x-axis.

Figure 5-13 is a graph showing the different results from one planar position to

the reference path using several different values for Vc" The first initial heading is specified
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Figure 5-H1 Spatial Tracking Convergence (x versus y)
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Figure 5.12 Spatial Tracking Convergence (x versus z)
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Figure 5-13 Convergence from any Initial Heading

as zero and each successive heading is oriented 7 from the previous. As depicted, the

algorithm gives a smooth convergence from any initial orientation to the reference path.

7. Convergence Characteristics

Referring to Figure 5-6, the distance between the image point, H, and the

forrunner point, A, has been labelled as s0 . As previously stated, the forrunner point is the

point that the vehicle is directed to steer towards at a particular At. As the length of so is
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changed, the space required for convergence is directly proportional while the value of the

curvature is inversely proportional. In other words, as s0 increases, space required for

convergence increases and the curvature value decreases.

Figure 5-14 shows the different space requirements for convergence using

different values of s0 . Figure 5-15 uses the same values of s0 , but shows their effect on ic.

Notice the trade off between the value of x and the space required for convergence.

C. IMPLEMENTATION COMPARISON

In the following section, the cross track and the spatial tracking algorithms are

compared. Figure 5-16 is the graph of both methods in regards to space required for

convergence.

1. Cross Track Guidance

One advantage of this method is that the scheme allows the vehicle to return to

the desired reference posture with respect to time. In other methods of guidance, an

acceleration scheme is required if this result was desirable. Additionally, this method has

been proven to be stable by the use of Liapunov functions [KANAYAMA 90]. This system

produced cubic spirals as the desired path to follow between postures which had the effect

of minimizing jerk between waypoints. The minimization of jerk is a very desirable feature

for a guidance system of an underwater vehicle.

The major disadvantage of this scheme is complexity. Although the scheme has

been successfully implemented on the Yamabico- 11 mobile land robot [KANAYAMA 90],

three dimensional applications become unnecessarily complex when compared with other

guidance methods. A key to the derivation of the target velocities are the gains required for

critically damped convergence. In [KANAYAMA 90], a relation was proposed and proved

that linked the two gains necessary to compute rotational velocity. In the three dimensional
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application of this method, this relation must still hold. However, instead of one target

rotational velocity computation, the three dimensional application requires target velocity

for pitch, roll, and yaw. Additionally, the equations that produce these target velocities are

computatively expensive which limit the performance of a real-time system.

6

qc = (0.I,-I,0,0.0)

4

2L-
pspa cross track

spatia] 
tracking

0 2 4 6 8

Figure 5-16 Comparison of Cross Track and Spatial Tracking

2. Spatial Tracking

By comparing the two methods shown on Figure 5-16, the advantage of spatial

tracking should be apparent. This guidance method allows a vehicle to return to the
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references path relatively quickly when compared with the convergence of cross track

guidance. Also, as previously noted, the expansion of this method to three dimensional

applications is simply.

The major disadvantage of spatial tracking is the inability to return to a specific

point on the reference path. Since the reference path does not use the concept of a posture,

arriving at a desired point is not feasible. This could be a problem in space critical domains.
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VI. RESULTS OF SIMULATION

The theory discussed in Chapter V has until now been applied only to a point mass.

Since a point mass contains no dynamic characteristics, the test runs conducted in Chapter

V were helpful in presenting the spatial tracking theory. However, we are more interested

in the presentation of this theory when applied to AUV.

A. SPATIAL TRACKING IN THE SIMULATOR ENVIRONMENT

Prior to the utilization of the spatial tracking algorithm into the simulator environment,

two specific modifications to the basic algorithm are required. First, the AUV has certain

limitations on maximum allowable curvature and also on maximum rate of curvature

change. Second, the vehicle must have the ability to switch reference paths.

1. Limiters

When the spatial tracking theory is applied to an actual vehicle such as the NPS

AUV, certain limitations to the commanded curvatures must be introduced. Without these

limitations, the guidance system would produce parameters that the vehicle could not

obtain. Figure 6-1 is a comparison of a point mass run with and without the two limiters

discussed below.

a. Curvature Limitation

As discussed in the section on curvature calculation, the computed curvature

value depends upon the position and orientation of the vehicle with respect to the reference

path. These commanded values may be impossible for a vehicle to obtain. For example, at

maximum fin deflection, the NPS AUV is capable of turning for 360 degrees with a

resulting radius of approximately ten feet. Using equation 5-30, the maximum commanded
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x value is 0.1 radians. This means that any commanded value in excess of 0.1 radians in

the positive direction or less than -0.1 radians in the negative direction must be reduced to

0.0

limited

(K =0 a t x =0)

-0.5

unlimited

-1.0 I I
-0 2 4 6

X 
. .

Figure 6.1 Correction to a Reference Path with and without Limiters

this maximum limit. This is accomplished by filtering the curvature calculations in the

control loop prior to updating the vehicle's posture at each iteration. See Figure 6-1 for a

graphical comparison of point mass runs with and without maximum curvature limiters.
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b. Curvature Rate Limitation

With the total range of curvature values limited to a 0.2 radian interval, the

rate of change within this interval must also be limited. Since the control loop of the AUV

is designed for a ten Hertz cycle, the rate of change of curvature must be constrained.

Actual pool tests show that the vehicle's control surfaces may complete a full traversal from

full positive angle to full negative angle in one second. Therefore, in 0.1 seconds, the

curvature may change 0.02 radians. This limitation is applied to the result of the limited

curvature discussed above. The results of this limiter are apparent on Figure 6-1. Notice the

gradual change in curvature with the limiter from 0.0 to 0.1 radians as compared with the

jump in curvature without the limiter from 0.0 to 1.0 radians.

2. Switching Reference Paths

In Chapter III, the four types of reference paths were introduced. In the point mass

examples of Chapter V, the test runs were conducted using a single reference path. In the

simulator environment, we are interested in travelling along multiple paths. By combining

the four path representations, it is possible to define any path. However, a mechanism must

be constructed that allows the switching of the reference from one path to another.

a. Continuous Reference Paths

A continuous reference path is made up of a linked series of waypoints. Each

waypoint is connected by a directed ray. The ray must take on the form of one of the four

types of reference path representations defined in Chapter III. A waypoint is located

wherever two rays cross. This waypoint is also the point that is used to define the ray that

is crossed. Figure 3-3 is an example of a continuous reference path. Once a continuous path

is defined from a series of waypoints, the mechanism for changing reference from one path

to another must be established. There are two possible implementations.
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(1) Turning Before Achieving Waypoint. When a turn prior to the waypoint

is desired, the mechanism for switching reference paths is when the forrunner point crosses

the new reference path. When the forrunner point (A on Figure 5-6) crosses the new

reference path, the definition point (q 0 ) of this new path is used by the guidance system

to compute values of curvature. This has the effect of causing the vehicle to turn towards

the new reference path a distance of so prior to the waypoint. See Figure 6-2 for a graphical

description of this case.

//Waypoint 
/

A

H

Turning Prior to Turning After
Waypoint Waypoint

Figure 6-2 Reference Path Switching

(2) Turning After Achieving Waypoint. When it is desirable for the vehicle

to reach the waypoint prior to turning towards the new path, the mechanism for switching

reference paths is the image point (H on Figure 5-6). When the image point reaches the

waypoint, the new reference path is used by the guidance system to compute values of

curvature. This has the effect of producing an overshoot of the waypoint as may clearly be
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seen in Figure 6-2. Also, when this case is used, symmetry is upset when reversing course.

See Figure 6-3 for a graphical description of this non-symmetric nature.

Start point is waypoint
1 and goal point is
waypoint 3.

11 2

Start point is waypoint 3
and goal point is
waypoint 1.

1 3

Figure 6-3 Non-Symmetric Nature of Turning After Waypoint

b. Discontinuous Reference Paths

A second type of reference path is a discontinuous reference path. If the

discontinuity is the result of a ending half-line (see Figure 3-2), the reference path is

switched as the image point arrives at this ending waypoint. However, once we have

determined that a switch is required, how do we specify the next reference path? In the

continuous case, the next reference path is the next item in the data structure that holds the
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waypoints, but because of the discontinuity, this method is unacceptable. In the testbed

vehicle, the solution to this problem will be handled outside of the guidance module.

Referring to Figure 4-2, the PLAN/REPLAN MISSION module will specify the next

reference path. Since this module does not exist in the simulator version, the next reference

path must be a user specified input. Once the new reference path is determined, the normal

calculation of curvature may take place.

B. RESULTS OF POOL TESTS

Two types of test runs were conducted in the pool environment. These test runs are

discussed below.

1. Kinematic Test Results

Prior to implementing the spatial tracking guidance scheme on the simulator with

vehicle dynamics, we believe it beneficial to present the results without dynamic

constraints. The kinematic path is the ideal path that the vehicle should follow and it is

important that the guidance system be independently verified for accuracy prior to

interfacing it with other vehicle components.

To achieve a kinematic result, the output of the guidance scheme is feed directly

into the H-matrix. Referring to Figure 3-1, this is accomplished by bypassing the autopilot.

Figure 6-4 is the ideal kinematic path using waypoints to construct a box pattern within the

NPS swimming pool. Waypoints are marked by the letter W and a reference line has been

added to show the desired path. The resulting path is relatively smooth with very little

oscillation. Referring to Figure 6-4, the following parameters were used to produce these

results:

* The origin (0, 0, 0) is located at the near left hand comer of the pool floor.

* The positive x- axis is the lower side pool wall.

* The positive y- axis is the left side pool wall.
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Figure 6-4 Kineatic Pool Test
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* The positive z- axis is the near left comer measured from the pool floor.

* The waypoints are linked in the order (150, 200, 5), (150, 800, 5), (600, 800, 5),

(600, 200, 5).

* s0 = 150.

* q, = (200, 200, 5, 0, 0, (see equation 3-1).

2. Dynamic Test Results

The kinematic test above is very beneficial in verifying the accuracy of the

guidance system. However, once this accuracy has been determined dynamic testing of the

guidance scheme is required. Figure 6-5 is a test run using the same initial parameters as

set forth in the kinematic test of Figure 6-4.

Due to the interface between the components of the simulator, the task of

obtaining favorable results was more difficult in the dynamic case than in the kinematic

case. In the kinematic case, once an appropriate value for so is found, the test will result in

a smooth convergence towards the reference path. However, in the dynamic case, the gains

of the autopilot also must be experimented with to achieve a smooth convergence. As

evident in Figure 6-5, there is still a slight tendency for the travelled path to contain

oscillations. The oscillations may be eliminated by adjusting the gains, but this results in a

reduced deflection angle on the rudders and planes of the vehicle. Although we have not

included a formal proof, we believe that the current autopilot settings are optimal.
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Figure 6-5 Dynamic Pool Test
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VII. CONCLUSION

The AUV research project at NPS is a continuing, evolutionary process. This work has

been just one contribution to the field of AUV research. This chapter is presented here to

encourage further research in the field and to point out things that we believe to be essential

for follow on research.

A. LESSONS LEARNED

The AUV project at NPS is an extremely complex undertaking. The size of this project

makes it virtually impossible for one person to comprehend the full scope of the AUV

software and hardware. It was very important from the start to follow proven software

development techniques. With the use of a data flow diagram, it was possible for the project

to be broken down into individual modules. Members of the research group could then

work on an individual module without duplication of effort. The data flow diagrams gave

everyone involved a clear understanding of what each module required to function and

what each module was responsible for producing. Without this software tool, utilization of

time and resources would have been poorly spent.

Accompanying the data flow diagrams for the simulator and the testbed vehicle was a

data dictionary. Just as the data flow diagrams were useful in the organization of individual

modules, the data dictionary was essential for the description of data. The data dictionary

listed individual elements of data structures with their data type. Without it, the individual

data flows between modules would be ambiguous. The data dictionary ensured each person

working on the project knew what information was to be passed between modules.
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B. FUTURE WORK

The NPS AUV is a testbed vehicle. Research in all aspects of the AUV project will

continue in the near future. In relation to this work, continued research would be desirable

in the following areas.

1. Expanded Use of Simulator Environments

As stated in Chapter III, three different environment models are available for use

in the simulator. However, the NPS swimming pool was the only model used within this

work. The major reason for this was that this orthogonal environme of the pool was the

only one suitable for the linear feature extraction algorithm developed by Floyd [FLOYD

91b]. In parallel with the continued work in linear feature extraction, the utilization of the

other environments should be attempted.

2. Expanded Use of Reference Paths

As stated in Chapter III, there are four different representations of a reference path

(see Figure 3-2). Within the scope of this work, only the continuous line and half line paths

were used in tests. The reasoning behind this was that the path switching mechanisms

discussed in Chapter VI have not been developed. Also, the convergence to a curved

surface is more complex than the convergence to a line and the necessary modifications to

the algorithm must be explored.
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APPENDIX A: COMPUTER CODE FOR CROSS TRACK GUIDANCE

* control_3d.h

* Header file for control_3d.c

#define DELTAT 0.1
#define LINVELOCITY .50
#define K_x 1.0
#define K 1 0.03250
#define K2 5.07
#define K3 .75
#define PI 3.14159265
#define DPI 6.28318530
#define NUMLOOPS 1500

double delta-theta;

typedef struct reLposture
double x;
double y;
double z;
double phi;
double theta;
double psi;
I REF_POS;

typedef struct
double reflinear_vel;
double ref_rotatephi;
double refrotatetheta;
double ref_rotatepsi;
) REFVEL;

typedef struct
double x;
double y;
double z;
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double phi;
double theta;
double psi;
) CUR POS;

typedef struct
double cur~linear_vel;
double curjrotephi;
double cur_rotate -theta;
double curjrotte-psi;
ICUR-VEL;

typedef struct
double targetjineary-el;
double target-. rotate-phi;
double target-rotatejheta;
double target-rotate-psi;
) VELS;

REF_-POS *ref ptr = NULL;
CURPOS *cuz -ptr = NULL;
VELS *vels-ptr = NULL;
REFVEL *1.vel-ptr = NULL;
CURVEL *cvel-ptr = NULL;

CURP05 *initialize-cur -postureo;
REF_-P05 *initialize-ref postureo;
REF _VEL *initialize-ref-velocitieso;
VELS *target-veloitieso;
CURVEL *perfect -veloitieso;
CURPOS *update-cur -postureo;
REFP05 *update ref postureo;
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*control_3d.c

*This is the "C" version of the program that computes linear and
*rotational velocities using the cross track guidance algorithm.

#include** *********** *******************

#include <sti.h>

#include "control_3d.h"

main()
I
int row_index;
int count = 0;
double normo;
FILE *xyout, *,-(z out;

refptr = initialize - eLpostureo;
rvel-ptr =initialize-ref~velocitiesO;

cur...ptr =initialize-cur-postureo;

xy...out = fopen("xy3c", "w");
xz-out = fopen("xz3c", "w");

for (row-index = 0; row-index < NUM_LOOPS; row-index++){
vels..ptr =targetyelocities(refptr, curptr, rvel-ptr);
cvel-ptr =perfect-velocities(velsptr);

cur...ptr = update-cur-posture(cur _ptr, cvelptr);
refptr = updatejrefposture(reLptr);

fprintf(xy-out, "17, If ", curptr->x);
fprintf(xy-out, " %lf\n", cur-ptr->y);
fprintf(xz-out, "%lf ", cur-ptr->x);
fprintf(xz-out, " %lffn", cur ptr->z);

)ls(xyc)
close("xy3c");
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CUW..POS *jnjtiaflizecur -postureo

CU&-POS *cur ptr;
double deg-psi;
double deg-tSheta;
double deg-phi;

cur-pt = (CURPOS *)malo(sizeof(CUR-POS));
printf("Enter current posture valuesMn");
printf("Enter x-coordinate. Use decimal value.\n");
scanf("%lf', &cur...ptr->x);
printf('\n);
printf("Enter y-coordinate. Use decimal value.'n");
scanf("%lf", &curptr->y);

printf("Enter z-coordinate. Use decimal value.\n");
scanf("%lf", &curptr->z);
printf("\n");
printf("Enter pitch angle. Use decimal value.\n");
scanf("%If ', &deg..phi);
printfC'\n");
printfC'Enter roll angle. Use decimal valueM\");
scanf("%lf", &degjtheta);

printfC'Enter yaw angle. Use decimal value.\n");
scanf("%lf", &deg-psi);
printfC'\n");
cur..ptr->psi= (deg-psi * 0.01745);
cur...ptr->phi = (deg-phi * 0.0 1745);
cur-ptr->theta = (deg-theta * 0.0 1745);
retum(curptr);*
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REFPOS *initialize ref posture()

REF-.POS *ref ph..

refptr = (REF_P05 *)malloc(sizeof(REF-POS));
ref..ptr->x = 0.0;
ref...ptr->y = 0.0;
reLptr->z = 0.0;
reLptr->phi = 0.0;
ref..ptr->theta = 0.0;
ref..ptr->psi= 0.0;
return(refptr);

REFVEL *iiilz-e-eoiis

REFVEL *rvel-pt

rvelptr = (REF _VEL *)maflo(sizeof(REF-VEL));
rvelptr->ref~linear-vel = LIN_VELOCITY;
rvelptr->ref rotate-phi = 0.0;
rvel-ptr->ref~rotate-theta = 0.0;
rvel-ptr->ref rotate-psi = 0.0;
return(rvel-ptr);

VELS *taget velocities(ref ptr, cur..ptr, rvelptr)
REFVEL *rvelptr
REFP05 *ref ptr;
CURP05 *cur -ph.;

VELS *vels-ph.;
double error x, error.y, error-z;
double error-phi, error-theta, errorpsi;

velsptr = (VELS *)mllk(sizeof(VELS));
error-x = (cos(cur-ptr->psi) * cos(cur-ptr->theta)*

(reLptr->x - cur-ptr->x)) +
(sin(cur-ph.->psi) * cos(curpt->theta)*
(reLptr->y - cur-ptr->y)) -

(sin(cur-ptr->theta) * (ref-ptr->z - cur-ptr->z));
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error-y =(((cos(cur..ptr->psi) * sin(curptr->theta) *

sin(curptr->phi)) -

(sin(cur..ptr->psi) * cos(cur. .ptr->phi))) *
(refptr->x - cur-ptr->x)) +

(((sin(curptr->psi) * sin(curptr->theta)*
sin(cur-ptr->phi)) +

(cos(curptr->psi) * cos(cur-pw->phi)))*
(refptr->y - cur-ptr->y)) +

((cos(curptr->theta) * sin(cur-ptr->phi))*
(refptr->z - cur-ptr->z));

error -z =(((cos(cur -ptr->psi) * sin(cur-ptr->rheta)*
cos(curptr->phi)) +

(sin(curptr->psi) * sin(cur-ptr->phi)))*
(ref..ptr->x - cur-ptr->x)) +

(((sin(curptr->psi) * sin(curptr->theta)*
cos(cur..ptr->phi)) -

(cos(cur..ptr->psi) * sin(cur...ptr->phi)))*
(refptr->y - cur...ptr->y)) +

((cos(cur-ptr->theta) * cos(cur-ptr->phi))*
(ref..ptr->z - cur-ptr->z));

error..phi = norrm(refj-ptr->phi - cur-pr->phi);
error -theta = norrn(reLiptr->theta - cur-ptr->theta);
error-.psi = norm(ref.ptr->psi - cur-ptr->psi);

/*thjs equations gives target linear velocity*/
vels-ptr->zargetinear -vel = rvel-ptr->ref~linear-vel +

rvel-ptr->refjinear -vel * (cos(error-psi) * cos(error-theta) - 1) +
(K..x * error-x);

/*thj5 equation gives target angular velocity for phi*/
vels-ptr->target-jotate-phi
rvel-ptr->ref rotatephi +

(rvelptr->ref rotate-theta*
((sin(refptr->phi) *tan(ref..ptr->theta)) -

(sin(cur.,.ptr->phi) *tan(cur pr->zheta)))) +

(rvel-ptr->ref-rotate-psi *
((cos(ref ptr->phi) *tan(ref ptr->theta)) -

(cos(cur-ptr->phi) *tan(cur-ptr->theta)))) +

(KI * sin(error-phi)) +
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(sin(cur..ptr->theta)*
(((error-y * rvel-ptr->ref linear-vel * cos(errorjtheta))/
K3) +

(rvelptr->ref~rotate-theta*
((sin(ref.ptr->phi) *tan(refptr->theta)) -
(sin(cur..ptr->phi) *tan(curptr->theta)))) +

(rvelptr->ref rotate-psi *
((cos(ref~ptr->phi) *tan(refptr->theta)) -
(cos(curptr->phi) *tan(cur-ptr->theta)))) +

(K3 * sin(error..psi))));

/*this equation gives target angular velocity for theta*/
velsptr->target-otate_theta
rvel-ptr->ref~rotate-:theta +

(cos(cur-ptr->phi) * (((- error-z * rvel-ptr->ref-linear..yel) /K2) +

(rvelptr->ref-rotate-theta *
(cos(ref..ptr->phi) - cos(curptr->phi))) +

(rvel-ptr->ref rotate-psi *
(-sin(ref-.ptr->phi) + sin(cur-ptr->phi))) +

M2* sin(error-theta)))) +

((sin(curptr->phi) * cos(curptr->theta))*
(((errory * rvelptr->ref linear -vel * cos(error-theta)) /K3) +

(rvelptr->ref~rotate_theta *
((sin(refptr->phi) * /cos(ref-ptr->theta)) -
(sin(cur-ptr->phi) * /cos(curiptr->theta)))) +

(rvel-ptr->ref-rotate-psi *
((cos(refiptr->phi) * /cos(refiptr->theta)) -
(cos(cur..ptr->phi) * /cos(cur-ptr->theta)))) +

(K3 * sin(error-psi))));
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/*this equation gives target angualr velocity for psi*/
velsptr->target~rotate-psi=
rvelptr->ref rotate-psi +

(sin(cur...ptr->phi) *
(((- errorz * rvel-ptr->ref linear-vel) / K2) +

(rvel..ptr->ref~rotate-theta *
(cos(ref..ptr->phi) - cos(curptr->phi))) +

(rvelptr->ref rotate-psi *

(- sin(reLptr->phi) + sin(cur _ptr->phi))) +

K2* sin(error-theta)))) +

((cos(cur ptr->phi) * cos(cur...ptr->theta))*
(((error-y * rvel-ptr->ref linear _vel * cos(errorjtheta)) /K2) +

(rvelptr->ref~rotate_theta *
((sin(reLiptr->phi) * /cos(ref...ptr->theta)) -

(sin(curptr->phi) * /cos(cur-ptr->theta)))) +

(rvel-ptr->ref rotate..psi *
((cos(refptr->phi) * /cos(reLptr->theta)) -

(cos(cur-ptr->phi) * /cos(cur ptr->theta)))) +

(K3 * sin(error..psi))));

return(vels,_.ptr);

CUR_-POS *update-cur posture(curptr, cvel-ptr)
CURPOS *cur -ptr;
CURVEL *cvel-ptr;

double delta-s;
double deltaphi, phil;
double deltajtheta, theta 1;
double delta-Psi, psi 1;

delta-Phi = DELTA_-T * cvel-ptr->curjrotate-phi;
delta -theta = DELTAT * cvel-ptr->cur-rotate-theta;
delta-..psi = DELTAT * cvel-ptr->curjrotate-psi;
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philI = cur-ptr->phi + (delta...phi / 2);
theta 1. = cur-ptr->theta =(delta - heta / 2);
psilI = cur -ptr->psi + (delta-psi / 2);

delta-s = DELTAT * cveIptr->cur _linearyel;

cur,..ptr->x = cur...ptr->x + (delta..s * cos(psi 1) *cos(phi 1));
cur...ptr->y = cur-.ptr->y + (delta-s * sin(psil) *cos(phil));

cur ptr->z = cur-ptr->z + (delta-s * sin(phil1));

cur..ptr->phi = cur....ptr->phi + delta.phi;
cur-ptr->theta = cur-ptr->theta + delta-theta;
cur-ptr->psi = cur-ptr->psi + delta-psi;
retum(cur-ptr);

CURVEL *perfectvelocities(velspt)
VELS *vels-pt.;
I
cvel-ptr = (CURVEL *)maflo(sizeof(CURVEL));
cvel-..ptr->cur-linear-vel = vels-ptr->target linear -vel;
cvel-ptr->cur-rotate-phi = vels-ptr->targetjrotate-phi;
cvel-ptr->cur-rotate-theta = vels-ptr->target - otate -heta;
cvel-ptr->cur rotate-psi = vels-ptr->target rotate pi;
retum(cvel-ptr);

REFPOS *update-ref posture(ref ptr)
REFP05 *ref pr;

double delta.s;

delta-s = DELTAT * rvel-ptr->ref-linear..yel;
refptr->x = ref..ptr->x + (delta-s * cos(ref-ptr->psi) * cos(refptr->phi));
refptr->y = rcf..ptr->y + (delta-s * sin(reLptr->psi) * cos(reLptr->phi));
refiptr->z = ref-ptr->z + (delta-s * sin(refiptr->phi));
ref,.ptr->phi = ref ptr->phi + (DELTAT * rvel-ptr->refj rotate-phi);
refptr->theta = ref-ptr->theta + (DELTAT * rvel-ptr->ref - otate-theta);
refptr->psi = ref-ptr->psi + (DELTAT * rvelptr->ref rotatepsi);
retum(reLptr);
1
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double norm(a)
double a;

while ((a > PI) 11 (a <= -PI))
if (a > PI)
a = a - DPI;
else
a = a + DPI;

return(a);
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APPENDIX B: COMPUTER CODE FOR SPATIAL TRACKING

sim2.h

This is the header file for spat-track.c.
Header file for the AUV Dynamic Simulator based on AUV Dataflow

Diagram v 1.1

#include <stdio.h>
#include <math.h>
#include <time.h>
#define PI 3.14159265358979323846
#define DPI 6.28318530717958647692
#define DELTAT 0.1
#define VELOCITY 2.0
#define sO 4.0
#define CURVE-MAX 0.1
#define CURVEDOTMAX 0.01

#define DERROR 0.001

typedef struct
double x,

Y,
Z,

phi,
theta,
psi;

)POINT_3D, POSTURE;

typedef struct{
POINT_3D Position;
int mode;

) POSTURE_3D;

POSTURE_3D Refposture, Current-posture;
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typedef struct {
double fin_deflection[81;
int tmain-rpm,

I t_mainjrpm,
fwdhor.rpm,
afthorjrpm,
fwdver rpm,
aft_verrpm;

) CONTROLS;

typedef struct I
double x;
double y;
double z;
double phi;
double theta;
double psi;
double kappa;
double gamma;
int path-gen;

CONFIG;

CONFIG*config-ptr;

typedef struct path {
double x;
double y;
double z;
double na;
double phi;
double psi;
double kappal;
d )uble gamma 1;
int nodenum;
struct path *prev;
struct path *next;

} REFPATH;

REFPATH *top = NULL, *before = NULL, *now;
FILE *in-file;
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double limitedkappa, limited-gamma;

REFPATH *guidajlceo;
void update-configurationo;
REF_-PATH *compute-kappao;
REF_-PATH *cornputeg~gmao;
double limiterjkappaG;
double limiter-amao;
double norrno;
REFPATH *create_refpatho;
REFPATH *check-forsrossO;
double determine-xyoentationo;
double determine-xz-orientationo;

spat-jrack.c

This is the spatial tracking guidance code that is Installed in the AUV simulator

#inclu*de* ***** ***** ***** ***** ***** ***** * ****

#include "auv.h"

#include "init-.parameters.h"
REFPATH *guidance(current-posture,config-ptr, auv,now)
POSTURE_3D *current-posture;
CONFIG *config-ptr;
Sub-ptr *auv;
REFPATH *nlow;

int index, limit;
static double prev-kappa, prev-gamma;

if((current-posture->Position.psi > PI) && (auv->constraint. box)){
current-posture->Position.psi = -(DPI - current-posture->Position.psi);
config-ptr->psi = cur-rent-posture->Position.psi;
config-ptr->x = c urrent-posture- >Position. .x;
config-ptr->y = current-posture->Position .y;
config-pu->z = current-posture->Position .z;

else
if(config-ptr->psi > PI)

config-ptr->psi = -(DPI - config-ptr->psi);
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if((current-posture->Position.phi > PI) && (auv->constraint. box))
current-posture->Position.phi = -(DPI - current-posture->Position.phi);
config-ptr->phi = current-posture->Position.phi;
j

else
if(config-ptr->phi > PI){

config..ptr->phi = -(DPI - config-ptr->phi);

if(!config-ptr->path-gen)
in-file = fopen("Ipfd", 'Y');
top = create-ref~path(top, now, in-file);
config-ptr->patK..gen = 1;
now = top;
config-ptr->x = -INITPOOL_,POSZ;
config-ptr->y = INIT_-POOL_-POSX;
config..ptr->z = INI1TAUVPOOLDEPTH;

now = computejcappa(configptr, now);
now = compute-gamima(config-ptr, now);
limited-kappa = limiter _kappa(now, prevkappa);

limiited-gamima = limiter-gamna(now, prev-gamma);
prey-kappa = limited-kappa;
prev-gamma = limited-gamma;
update-configuration(configptr, limited-kappa, limited-gamma, auv);
return(now);

REFPATH *create ref path(top, now, in-fle)
REFPATH *tp *now;
FILE *in-file;

double x, y, z, na;
double phi, psi;
int count, node;

before =NULL;
fscanf(in-file, "%d", &node);
for (count = 1; count <= node; count++)
fscanf(in_file, "%If %If %If %If',

&x, &y, &z, &na);
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if (count == 1)
top = (REF _PATH *)malloc(sizeof (REFPATH));
before = top;
now =top;

else
now->next = (REFPATH *)malloc(sizeof(REFPATH));
now = now->next;

)o-x=x
now->x = y
now->y = z

now->na =na;

now->psi determinexyorientation(now, before);
now->Phi =determine-xz-orientation (now, before);
now->prev = before;
before = now;
now->node_num = node;
now->next = NULL;

top->prev = now;
top->node-num = count;
now->next = top;
return(top);

double determine-xyo-rientation(now, before)
REFPATH *nw *be fore;

before->psi = atan2((now->y - before->y), (now->x - before->x));
return(before->psi);

double determine-xz-orientation (now, before)
REFPATH *nw *before;

before->phi = atan2((now->z - before->z), (now->x - before->x));
retum(before->phi);
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double limiter-kappa(now, prev...kappa)
REFPATH * now;
double prev-.kappa;

i f n w > a p l > C R E M X
inow->kappal = CURVEMAX)

else if (now->kappal < - CURVEMAX)(
now->kappal =-CURVEMAX;

if (prevkappa >= 0.0)
if (now->kappal >= 0.0)
if ((now->kappal >= (prevjcappa + CURVEDOTMAX)) &&

(now->kappal > prev-kappa))[
now->kappal = previcappa + CURVE._DOT _MAX;

else if ((now->kappal < (prevjcappa - CURVEDOTMAX)) &&
(now->kappal < previcappa))

now->kappal = prevjcappa - CURVEDOT..MAX;

else if (now->kappal < 0.0)1
if (now->kappal < (previcappa - CURVEDOTLMAX))

now->kappal = prev-kappa - CURVEDOTMAX;

else if (prevkappa < 0.0){
if (now->kappal >= 0.0)
if (now->kappal >= (prev-kappa + CURVEDOT _MAX))

now->kappal = prev-kappa + CURVEDOTMAX;

else if (now->kappal < 0.0)
if ((now->kappalI >= (prev-kappa + CURVEDOTMAX)) &&

(prev-kappa < now".>kappal))
now->kappal = prev-kappa + CURVEDOTMAX;

else if ((now->kappal < (prev-.kappa - CURVEDOTMAX)) &&
(prev-kappa > now->kappa I))

now->kappal = prev-kappa - CURVEDOTMAX;
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return(now->kappa 1);

double limiter..gamma(now, prev-gamma)
REFPATH *nlow;

double prevgammna;

i(nw>aml>CREMX
inow->gammal = CURVEMAX)

else if (now->ganixal < - CURVEMAX)
now->gammal =-CURVE_ MAX;

if (prev...garma >= 0.0){
if (now->ganinal >= 0.0){
if ((now->gammalI >= (prev..gamma + CURVEDOTMAX)) &&

(now->gaznmal > prev-gamma))
now->gammal = prev-ganlma + CURVE_DOTJAMAX;

else if ((now->gammal < (prev..gamma - CURVEDOTMAX)) &&
(now->gammal < prev-gamma))

now->garnmal = prev-gamma - CURVEDOL-MAX;

else if (now->garnal < 0.0)
if (now->gammnal < (prev.gamma - CURVEDOTMAX))

now->gammral = prev-gamma - CURVEDOTMAX;

else if (prev-gamma < 0.0)
if (now->gammal >= 0.0)
if (now->gammal >= (prev-gamma + CURVEDOTMAX))

now->gammnal = prev-gamma + CURVEDOT-vIAX;

else if (now->gammal < 0.0)
if ((now->gammal >= (prev-gamima + CURVEDOTMAX)) &&

(prev-gamma < now->gamma 1))
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now->gammal = prev..gamma + CURVEDOTLMAX;

else if ((now->gammal < (prev-gamnma - CURVEDOL-MAX)) &&
(prev..garnma > now->gamma 1))I

now->gammal = prev-gamma - CURVEDOTMAX;

return(now->garnmal);

REF_-PATH *compute -kappa(config.ptr, now)
CONFIG *config-pt.;
REFPATH *nlow;

double psi I, alpha, beta, temp kappa;
double omega, betalI;
double d, dO, dl, si;
double qOx, qOy, qOpsi;
double Ax, Ay, Hx, Hy;

typedef struct
doublex;
doubley;
REF;

REF *image, *ahead;
REFPATh *before;

qOx = now->x;
qOy = now->y;
qOpsi =now->psi;

dO = sqrt(fabs(pow(fabs(qOx - configptr->x), 2.0) +
pow(fabs(qOy - config-.ptr->y), 2.0)));

betal = atan2((qOy - config-ptr->y), (qOx - config-ptr->x))
beta = beta 1 - (qOpsi - PIt2);

dI -dC * sin(beta);
image = (REF *)ma11oc(sizeof(REF));
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image->x = (qOx - dlI * cos(q~psi));
imnage->y = (qOy - dl * sin(qOpsi));

ahead = (REF *)malloc(sizeof(REF));
ahead->x = (image->x + sO * cos(qOpsi));
ahead->y = (iniage->y + sO * sin(qOpsi));

alpha = atan2((ahead->y - config-ptr->y),
(ahead->x - configptr->x));

psil. = (2 * alpha) - config-ptr->psi;
omega = alpha - config-ptr->psi;
d = sqrt(fabs(pow(fabs(ahead->x - configptr->x), 2.0) +

pow(fabs(ahead->y - config..ptr->y), 2.0)));

if (config..ptr->y >= qOy)
if (psi 1 <= qOpsi)

now->kappal, = 2 * sin(omega) / d;

else
now->kappal = ((pow((l.0 - cos(config-ptr->psi - qOpsi)), 2.0))*

SO) /
((dO * cos(beta)) * fabs((dO * cos(beta))*

sin(config-ptr->psi - qOpsi)));

else if (config..ptr->y < qOy)(
if (psil I>= qOpsi)

now->kappal. = 2 * sin(omega) / d;

else
now->kappal = ((pow((l.O - cos(config-ptr->psi - qOpsi)), 2.0))*

((dO *cos(beta)) * fabs((ciO *~ cos(beta))*
sin(config-ptr->psi - qOpsi)));

tempkappa =now->kappa 1;
Ax = ahead->x;
Ay = ahead->y;
Hx = image->x;
Hy = image->y;
before = now;
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now = now->next;
now = checkjfor__cross(now, before, Ax, Ay, lix, Hy);
now->kappal = tempkappa;
return(now);

REFPATH *compute-ganma(configpt7, now)
CONFIG *configpt.;
REFPATH *now;

double philI, alpha, beta, temp-gamma;
double omega, betal;
double d, dO, dlI;
double qOx, qOz, qOphi;
double Ax, Az, lix, Hz;
typedef struct

doublex;
doublez;
REF;

REF *image, *ahead;
REFPATH *before;

qOx = now->x;
q~z = now->z;
qOphi =to-.pi
dO = sqrt(fabs(pow(fabs(q~x - configptr->x), 2.0) +

pow(fabs(qOz - config..ptr->z), 2.0)));
betal = atan2((qOz - config-.ptr->z), (qOx - configptr->x));
beta = betalI - (qOphi - P1/2);
d I = dO * sin(beta);
image = (REF *)mallkc(sizeof(REF));
image->x = (qOx - d I * cos(q~phi));
image->z = (qOz - dlI * sin(qOphi));
ahead = (REF *)malloc(sizeof(REF));
ahead->x = (image->x + sO * cos(q~phi));
ahead->z = (image->z +~ sO * sin(qOphi));
alpha =atan2((ahead->z - configptr->z),

(ahead.->x - config-ptr->x));
philI = (2 * alpha) - config-ptr->phi;
omega = alpha - config-ptr->phi;
d = sqrt(fabs(pow(fabs(ahead->x - config-pw->x), 2.0) +

pow(fabs(ahead->z - configptr->z), 2.0)));
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if (configptr->z >= q~z)
if (philI <= qOphi) (
now->gammal = 2 *sin(ornega) / d;
I
else if (philI > qOphi)
now->ganinal = ((pow(( 1.0- cos(config..ptr->phi - qOphi)), 2.0))*

sO)
((dO * cos(beta)) * fabs((dO * cos(beta))

sin(config-ptr->phi - qOphi)));

else if (config..ptr->z < qOz)
if (philI >= qOphi) (

now->ganimalI = 2 * sin(omega) / d;

else if (philI < qOphi)
now->ganimal = ((pow((l - cos(configptr->phi - qOphi)), 2.0))*

SO) /
((dO * cos(beta)) * fabs((dO * cos(beta))*

sin(config-ptr->phi - qOphi)));

temp-.gamma = now->gamnma I
Ax = ahead->x;
Az = ahead->z;
Hx = image->x;
Hz = image->z;
before = now;
now = now->next;
now = checkjfor _cross(now, before, Ax, Az, Hx, Hz);
now->gammal = temp-gamma;
return(now);

REFPATH *check-for-cross(now, before, Ax, Ay, Hx, Hy)
REFPATH *nw *before;
double Ax, Ay, Hx, Hy;

double psi-d, beta;
double dO, dlI, dw;

typedef struct
double x;
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doubley;
)CROSS;

CROSS *w, *c;

psi-d = now->psi - before->psi;
dO = sqrt(fabs(pow(fabs(now->x - before->x), 2.0) +

pow(fabs(now->y - before->y), 2.0)));
beta = atan2((now->y - before->y), (now->x -

before->x)) - (before->psi);
dl = dO * sin(beta);

w = (CROSS *)niaI1oc(sizeof(CROSS));
w->x = (now->x - dl * cos(before->psi + P112));
w->y =(now->y - dl * sin(before->psi + P1/2));

dw = d I / tan(psi-d);

c = (CROSS *)mapl1c(sizeof(CROSS));
C->x = (w->x - dw * cos(before->psi));
c->y = (w->y - dw * sin(before->psi));

if (fabs(fabs(R-x) - fabs(c->x)) < DERROR)
Hx = -x

if (fabs(fabs(Hy) - fabs(c->y)) < DERROR)
Hy = c->y;

if (fabs(fabs(Ax) - fabs(c->x)) < DERROR)
Ax = -x

if (fabs(fabs(Ay) - fabs(c->y)) <z DERROR)
Ay = -y

if (((Hx >= c->x) && (Ax >= c->x)) && ((Hy >= c->y) && (Ay >= c->y)) 11
(((Hx <= c->x) && (Ax <= c->x)) && ((Hy <= c->y) && (Ay <= c->y))))

retum(before);

else
return(now);

84



void updatesonfiguration(config-ptr, limited-kappa, limited-gamma, auv)
CONFIG *config-pt.;
double limited-kappa;
double limited-gamma;
Sub-ptr *auv;

dobedlas
double deltas;
double delta-phi;

if(auv->constraint. box)
delta~s = DELTAT * 24.0;

else
delta -s = DELTAT * auv->dyn.vel[jO] *12.0;

delta-psi =delta-s *config-.ptr->kappa;

delta-phi =deltas* config-ptr->gamma;
config-ptr->x = config-ptr->x + (deltas * cos(config-ptr->psi +

delta..psi / 2));*
cos(config~ptr->phi));

configptr->y = config-ptr->y + (delta-s * sin(config-ptr->psi +
delta-psi / 2));*

cos(configptr->phi));
config..ptr->z = config-ptr->z + (delta-s * sin(config-ptr->phi));
config-ptr->kappa = limitedkappa;
config-ptr->garnma = limited-gamma;
config-ptr->phi = config-ptr->phi + (delta-s *configptr->gamma);

config-ptr->psi = config-ptr->psi + (delta-s *config-ptr->kappa);

double norm(a)
double a;

while ((a > PI) 11 (a <= -PI)){
if (a >PI)

a = a - DPI;
else

a = a + DPI;

retum(a);
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APPENDIX C: NPS AUV DYNASIMUSER'S MANUAL

I. INTRODUCTION

The following document is intended to aid the user of the NPS AUV DYNASIM. This 3D

graphic simulator was designed and coded by Tom Jurewicz as his thesis project in

December of 1990. Further additions to this simulator were made by Floyd, Magrino,

Brutzman, and Caddell throughout 1991. Accompanying this manual is an on-line user's

manual that gives the user ready access to information by depressing the right mouse over

any menu item that needs explanation.
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III. USER'S MANUAL

The following is a detailed list of instructions for each menu item.

A. Velocities

When the left mouse is activated on the velocities option, the Velocity panel will

appear in the upper left hand comer of the screen. A velocity for each degree of the six

degrees of freedom that the AUV may move is displayed:

1) Surge

2) Sway

3) Heave

4) Roll

5) Pitch

6) Yaw

This panel is utilized to monitor the state of the vehicle while running dynamic tests.

Comparisons with data obtained from in-pool testing should reveal whether or not the

vehicle is responding appropriately.

The numeric box above each of the six graphs gives accelerations for each of the six

degrees of freedom in the AUV. The numeric box below each of the six graphs gives

velocities for each of the six degrees of freedom in the AUV. The red lije on the chart

represents zero acceleration and the black line represents history of the changes in

acceleration for the current test.

The box in the lower left hand comer of this panel allows the user to hide this panel.

B. Recorder

When the left mouse is depressed on the Recorder option, the Recorder panel will

appear in the bottom left hand corner of the screen. The recorder provides the capability to
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record and replay scenarios. The recording is made in the ASCII file "recording" which

contains the initial vehicle state followed by times, RPMs and fin deflection whenever a

change of RPM or deflection occurred. The panel is hidden by depressing the left mouse

button in the box of the lower left hand corner.

1. Off

When this button is active (an X appears in the box to the left), no record is being

made of the current simulator mission. If this button is inactive (no X), either the Record or

Playback button must be active.

2. Record

When this button is active (an X appears in the box to the left), the current

simulator mission is being recorded. Times, RPMs and fin deflections are being recorded

in the "recording" file in ASCII text. When a recording is made, it erases the previous tape

named "recording."

3. Play

When this button is active (an X appears in the box to the left), the latest simulator

mission to be recorded will be played back. Playbacks may occur as many times as desired

without erasing the tape. External scripts may be played if they are loaded to the

"recording" file.

4. Auxiliary

This feature is still under development.

5. Speed

This option allows the user to adjust playback speed. The speed ranges may be

adjusted from zero to five times normal speed.

C. Coefficients

When the left mouse is depressed on the Coefficients option, the Coefficients panel

will appear in the bottom left hand corner of the screen. The Coefficients panel provides
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the user the capability to modify the Hydrodynamic and Added Mass Coefficients while

watching the effects upon the vehicle on the screen. One of seven different actuator panels

may be called up by selecting the appropriate button. The base coefficient information is

stored in the "coefficients.dir" directory and are accessed by the simulator to provide

accurate vehicle motion. The panel has 10 selector buttons on the bottom that have the

following functions:

Save File: Allows the user to save a copy of changes that were made to the coefficients.

This file is placed in the coefficients.dir directory and overwrites any existing file by that

name.

Read File: Allows the user to recall a previously saved file for use by the simulator.

When this file is recalled, the base values on the actuators will be replaced with the saved

values.

Exit: Hides the actuators. The exit box in the lower left comer of the panel only hides

the menu panel.

The remaining seven buttons allow the user to select which actuator panel is to be

used.

Added Mass: Allows user to change the mass coefficients of the simulator vehicle.

This is the panel that is initially displayed

Surg e: When selected, displays Surge Hydrodynamic Coefficients.

Sway: When selected, displays Sway Hydrodynamic Coefficients.

Heave: When selected, displays Heave Hydrodynamic Coefficients.

Roll: When selected, displays Roll Hydrodynamic Coefficients.

Pitch: When selected, displays Pitch Hydrodynamic Coefficients.

Yaw: When selected, displays Yaw Hydrodynamic Coefficients.
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D. Frames

When the left mouse is depressed on the Frames option, the Frames panel will appear

in the bottom left hand corner of the screen. The Frames panel gives the workstation's

performance in two ways. Delta Time is the total time between swapbuffers and the frame

rate is the inverse, i.e., total frames per second. The meters are single pen stripcharts.

E. Dynamics

When button is selected, the simulator switches from kinematic input from spaceball/

mouse to dynamic input from H-matrix.

F. Cockpit View

This option gives the user the ability to view the simulation from one of two views.

When the Cockpit View button is active (an X appears in the box to the left of the menu

choice), the simulation view is from the nose of the vehicle.

When the Cockpit View button is inactive (no X appears in the box to the left of the

menu choice), the simulation view is external to the vehicle. The actual view position in

this mode is dependent upon the settings of the five dials above the main menu panel:

* Inclination

* Azimuth

* Distance (near)

* Distance (far)

* Twist

The cockpit view is toggled from active to inactive by depressing the left mouse button

over the menu box.

G. AUV Center

This option gives the user the ability to position the vehicle in relation to the screen.

When the AUV Center button is active (an X appears in the box to the left of the menu

choice), the vehicle remains in the center of the viewing screen while the background
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terrain moves. This option gives the user the perspective that he is moving with the vehicle

as it moves.

When the Cockpit View button is inactive (no X appears in the box to the left of the

menu choice), the vehicle moves while the terrain stays motionless. This option gives the

user the perspective that he is stationary as the vehicle moves. The AUV Center button is

toggled from active to inactive by depressing the left mouse button over the menu box.

H. Sonar

When the left mouse is depressed on the Sonar option, the Sonar panel will appear in

the upper right hand comer of the screen. The Sonar panel has several features:

Sonar Selection: The five boxes at the top of the panel labeled one thru five allow

the user to select the use of individual sonars. Any combination of sonars may be selected

from one to all. At present, the vehicle only utilizes four sonars. The fifth box is added

for flexibility.

Speed and Heading: The two dials indicate vehicle speed and heading. Also present

above each dial is a numeric value that gives a precise value of the corresponding dial.

Floor and Depth: The Floor and Depth bar graphs give a reading of the depth of the

pool floor from the surface and the depth of the vehicle from the surface respectively. The

floor bar graph bottoms out at -8 feet. If the actual bottom is less than this value, a solid

fill is added from -8 feet to the actual depth. The corresponding numeric values are also

displayed above the bar graphs.

Bottom Contour: This gives a two dimensional view of the pool bottom (blue line)

and the vehicle depth (red line). This graph is plotted only while the current sonar panel

is displayed. All previous graphs are cleared when the user exits the sonar box.

Exit: A left mouse hit to the square in the bottom left hand comer allows the user to

exit from the sonar panel.
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L Mission Planner

This panel is still under development.

J. Control Panel

When the left mouse is depressed on the Control Panel option, the Control Panel will

appear above the main menu. Each element of this panel is explained individually by

depressing the right mouse on the menu option of this panel.

1. Box

When the left mouse is depressed on this box, the user loses manual control and

a preprogrammed box pattern is run inside the pool.

2. Snake

When the left mouse is depressed on this box, the user loses manual control and

a preprogrammed snake pattern is run inside the pool.

3. Figure 8

When the left mouse is depressed on this box, the user loses manual control and

a preprogrammed Figure 8 pattern is run inside the pool.

4. Rudders

When the left mouse is depressed on this bar and the Mouse box is active, the user

is able to adjust the rudders on the vehicle to the desired angle. The top bar indicates the

left rudders and the bottom bar indicates the right rudders. Unless the SepRuds box is

active, any input on the left rudder will cause an opposite reaction on the right rudder. This

also applies in reverse. If the SepRuds box is not active (no X), an input to one side results

in only a rudder movement on that side. On initial start-up of the simulation, rudders are

positioned at 0.0 degrees. The box to the left of each rudder bar gives the actual bar position

to the nearest 10th of a degree. The rudders have a deflection range of -40.0 degrees to 40.0

degrees.
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There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the bar and drag it to the desired

angle.

5. Planes

When the left mouse is depressed on this bar and the Mouse box is active, the user

is able to adjust the planes on the vehicle to the desired angle. The left bar indicates the left

planes and the right bar indicates the right planes. Unless the SepRuds box is active, any

input on the left planes will cause an opposite reaction on the right planes. This also applies

in reverse. If the SepRuds box is not active (no X), an input to one side results in only a

plane movement on that side. On initial start-up of the simulation, planes are positioned at

0.0 degrees. The box to the bottom of each plane bar gives the actual bar position to the

nearest 10th of a degree. The planes have a deflection range of -40.0 degrees to 40.0

degrees.

There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the bar and drag it to the desired

angle.

6. Mouse

When this box is active (an X is present in the box), the movement of the rudders

and planes bars are controlled by the mouse. If the box is not active (no X), the rudders and

planes are controlled by the spaceball.

95



7. Sep Ruds

When the SepRuds and the Mouse boxes are active (an X is present in both

boxes), the user is able to independently control the left and the right rudders of the vehicle.

When this box is not active, an input to one rudder gives the opposite corresponding input

to the other side.

8. Sep Planes

When the SepPlanes and the Mouse boxes are active (an X is present in both

boxes), the user is able to independently control the left and the right planes of the vehicle.

When this box is not active, an input to one plane gives the opposite corresponding input

to the other side.

9. Sep RPM

When the SepRPM box is active (an X is present in the box), the user is able to

independently control each of the six RPM bars on the control panel. When this box is not

active, the six RPMs are paired into three groups:

* L.M.RPM and the R.M.RPM (left main and right main).

* F.H.RPM and the R.H.RPM (front hover and rear hover).

* F.V.RPM and the R.V.RPM (front vertical and rear vertical).

An input to one RPM of the pair causes the other RPM in the pair to advance to

the same position.

10. Neutral

When the left mouse is depressed on this box, it causes all plane, rudder and RPM

settings to return to the equilibrium state of zero.

11. Soft Constants

This box is still under development.

12. Hard Constants

This box is still under development.
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13. Auto Depth

When the Auto Depth and the Mouse boxes are active (an X is present in both

boxes), the depth of the vehicle will stay at the last value recorded. Any adjustments to the

planes bars will have no effect upon vehicle motion.

14. Auto Course

When the Auto Course and the Mouse boxes are active (an X is present in both

boxes), the heading of the vehicle will stay at the last value recc,rded. Any adjustments to

the rudders bars will have no effect upon vehicle motion.

15. Auto Speed

When the Auto Speed box is active (an X is present in the box), the speed of the

vehicle will stay at the last value recorded. Any adjustments to the RPM bars will have no

effect upon vehicle speed.

16. L. M. RPM

When the left mouse is depressed on this bar, the user is able to adjust the RPM

of the left propeller. If the SepRPM box is active (an X is present in the box to the left of

it), an adjustment to left main RPM may be accomplished without effecting any settings on

the right main RPM. If the SepRPM box is not active (no X), any input to the L.M. RPM

will cause the same input to be applied to the R.M. RPM. On initial start-up of the

simulation, RPMs are positioned at 0.0 degrees. The box to the left of each RPM bar gives

the actual bar position to the nearest 10th of a RPM. The RPM bars have a deflection range

of -1000.0 RPMs to 1000.0 RPMs.

There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snaps to this degree position. The second way is to
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depress the left mouse button over the current position of the bar and drag it to the desired

angle.

17. R. M. RPM

When the left mouse is depressed on this bar, the user is able to adjust the RPM

of the right propeller. If the SepRPM box is active (an X is present in the box to the left of

it), an adjustment to right main RPM may be accomplished without effecting any settings

on the left main RPM. If the SepRPM box is not active (no X), any input to the R.M. RPM

will cause the same input to be applied to the L.M. RPM. On initial start-up of the

simulation, RPMs are positioned at 0.0 degrees. The box to the left of each RPM bar gives

the actual bar position to the nearest 10th of a RPM. The RPM bars have a deflection range

of -1000.0 RPMs to 1000.0 RPMs.

There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snai ; to this degree position. The second way is to

depress the left mouse button over the current position of the bar and drag it to the desired

angle.

18. F. H. RPM

When the left mouse is depressed on this bar, the user is able to adjust the RPM

of the forward hover thruster. If the SepRPM box is active (an X is present in the box to the

left of it), an adjustment to forward hover RPM may be accomplished without effecting any

settings on the rear hover RPM. If the SepRPM box is not active (no X), any input to the

F.H. RPM will cause the same input to be applied to the R.H. RPM. On initial start-up of

the simulation, RPMs are positioned at 0.0 degrees. The box to the left of each RPM bar

gives the actual bar position to the nearest 10th of a RPM. The RPM bars have a deflection

range of -1000.0 RPMs to 1000.0 RPMs.
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There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the bar and drag it to the desired

angle.

19. R. H. RPM

When the left mouse is depressed on this bar, the user is able to adjust the RPM

of the rear hover thruster. If the SepRPM box is active (an X is present in the box to the left

of it), an adjustmetnt to rear hover RPM may be accomplished without effecting any settings

on the forward hover RPM. If the SepRPM box is not active (no X), any input to the R.H.

RPM will cause the same input to be applied to the F.H. RPM. On initial start-up of the

simulation, RPMs are positioned at 0.0 degrees. The box to the left of each RPM bar gives

the actual bar position to the nearest 10th of a RPM. The RPM bars have a deflection range

of -1000.0 RPMs to 1000.0 RPMs.

There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the bar and drag it to the desired

angle.

20. F. V. RPM

When the left mouse is depressed on this bar, the user is able to adjust the RPM

of the forward vertical thruster. If the SepRPM box is active (an X is present in the box to

the left of it), an adjustment to forward vertical RPM may be accomplished without

effecting any settings on the rear vertical RPM. If the SepRPM box is not active (no X), any

input to the F.V. RPM will cause the same input to be applied to the R.V. RPM. On initial

start-up of the simulation, RPMs are positioned at 0.0 degrees. The box to the left of each
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RPM bar gives the actual bar position to the nearest 10th of a RPM. The RPM bars have a

deflection range of -1000.0 RPMs to 1000.0 RPMs.

There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the bar and drag it to the desired

angle.

21. R. V. RPM

When the left mouse is depressed on this bar, the user is able to adjust the RPM

of the rear vertical thruster. If the SepRPM box is active (an X is present in the box to the

left of it), an adjustment to rear vertical RPM may be accomplished without effecting any

settings on the forward vertical RPM. If the SepRPM box is not active (no X), any input to

the R.V. RPM will cause the same input to be applied to the F.V. RPM. On initial start-up

of the simulation, RPMs are positioned at 0.0 degrees. The box to the left of each RPM bar

gives the actual bar position to the nearest 10th of a RPM. The RPM bars have a deflection

range of -1000.0 RPMs to 1000.0 RPMs.

There are two ways in which the user may use this bar. The first is a snap position

where the user depresses the left mouse button anywhere within the bar and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the bar and drag it to the desired

angle.

K. Pool

This option is hard coded on in this version of the simulator. In future versions, the

user will be able to select three different terrains:

* The NPS Swimming Pool

* Monterey Bay (200 meter spacing)
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* Monterey Harbor (30 feet spacing)

L. Execute Mission

This panel is still under development.

M. Reset

When the left mouse is depressed on the reset option, all changes made on any panels

will be reinitialized to the start values. This includes vehicle position and speeds, but does

not include any changes made using the five orientation dials above the main menu.

N. Exit

When the left mouse is depressed on the exit option, the simulation is ended and the

control is passed back to the operating system of the Iris graphics ma,.nine.

0. Inclination

When the left mouse is depressed on this dial, the user is able to rotate the entire

viewing angle about the y-axis. On initial start-up of the simulation, inclination is

positioned at 17.2 degrees. The box above the dial gives the actual degree position to the

nearest 10th of a degree. On the dial, the middle right tickmark is the 0 degree position and

the user may adjust the angle from -180.0 degrees to 180.0 degrees.

There are two ways in which the user may use this dial. The first is a snap position

where the user depresses the left mouse button anywhere within the dial and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the dial and drag it to the desired

angle. The drag method gives a smooth rotation about the axis.

P. Azimuth

When the left mouse is depressed on this dial, the user is able to rotate the entire

viewing angle about the x-axis. On initial start-up of the simulation, azimuth is positioned

at -51.6 degrees. The box above the dial gives the actual degree position to the nearest 10th
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of a degree. On the dial, the bottom tickmark is the 0 degree position and the user may

adjust the angle from -180.0 degrees to 180.0 degrees.

There are two ways in which the user may use this dial. The first is a snap position

where the user depresses the left mouse button anywhere within the dial and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the dial and drag it to the desired

angle. The drag method gives a smooth rotation about the axis.

Q. Distance

1. Near Distance

When the left mouse is depressed on this dial, the user is able to adjust the

distance of viewing measured from the left hand comer of the pool. This center dial gives

ranges from 7.0 feet to 400.0 feet. This dial enables fine distance adjustments.

The box above the dial gives the actual distance to the nearest 10th of a foot. On

the dial, the top tickmark is the zero distance position.

There are two ways in which the user may use this dial. The first is a snap position

where the user depresses the left mouse button anywhere within the dial and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the dial and drag it to the desired

angle. The drag method gives a smooth rotation about the axis.

2. Far Distance

When the left mouse is depressed on this dial, the user is able to adjust the

distance of viewing measured from the lefthand comer of the pool. This dial gives ranges

from 0.0 feet to 2000.0 feet. This dial enables rough distance adjustments.

The box above the dial gives the actual distance to the nearest 10th of a foot. On

the dial, the top tickmark is the zero distance position.
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There are two ways in which the user may use this dial. The first is a snap position

where the user depresses the left mouse button anywhere within the dial and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the dial and drag it to the desired

angle. The drag method gives a smooth rotation about the axis.

R. Twist

When the left mouse is depressed on this dial, the user is able to rotate the entire

viewing angle about the z-axis. On initial start-up of the simulation, azimuth is positioned

at 0.0 degrees. The box above the dial gives the actual degree position to the nearest 10th

of a degree. On the dial, the top tickmark is the 0 degree position and the user may adjust

the angle from -180.0 degrees to 180.0 degrees.

There are two ways in which the user may use this dial. The first is a snap position

where the user depresses the left mouse button anywhere within the dial and the when the

button is released, the viewing angle snaps to this degree position. The second way is to

depress the left mouse button over the current position of the dial and drag it to the desired

angle. The drag method gives a smooth rotation about the axis.
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